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My field: geometry processing
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My field: geometry processing
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My field: geometry processing
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Geometric data is all around us

4



Computation is essential

5[ Gao, Huth, Lescroart & Gallant 2015 ]



Computation is essential
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unfold

[ Gao, Huth, Lescroart & Gallant 2015 ]



Computation is essential
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[ Boyer, Lipman,
St. Clair, et al. 2011 ]
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Computation is essential
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[Euler, 1744][Euler, 1744]

[Cayley, 1896][Cayley, 1896]

[Euler, 1744]

[Beltrami, 1868]

[Babylonian table, c.1800 BCE] [Zhou, c. 200][Babylonian table, c.1800 BCE] [Zhou, c. 200]

Key tool: differential 
geometry



Working with 3D shapes is hard
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Working with 3D shapes is hard

Example: predict sound by finding
      vibrational modes

build bilaplacian matrix 
and find eigenvectors



Working with 3D shapes is hardWorking with 3D shapes is hard
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Working with 3D shapes is hard
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Result:Example: predict sound by finding
      vibrational modes



Problem: triangle quality
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Problem: triangle quality
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Result:



Problem: triangle quality

13

using bad 
triangles 

using good 
triangles 

• Same number of vertices

• Not a resolution issue

• Same geometry

• Not an approximation issue

4x lower error
measured with a posteriori

error estimates 



Problem: triangle quality
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using bad 
triangles 

using good 
triangles 

• Same number of vertices

• Not a resolution issue

• Same geometry

• Not an approximation issue

• Same number of verticesSame number of verticesSame

• Not a resolution issue

• Same geometrySame geometrySame

• Not an approximation issue

Problem. Our triangles play two roles.
They encode both:

1. the geometry of a surface
2. a space of functions on that surface.



Intrinsic triangles
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!

"#

broadening our idea of what a triangle is

 flexibility to build models
out of good triangles

⟹



Intrinsic triangles
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Clean solution to 
triangle quality issues
if  you have a !xed 
background surface
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What if our geometry 
changes over time?

What if there is no fixed 
background surface?



In my thesis,
I present data structures & algorithms

Evolving intrinsic triangulations

18

for using intrinsic triangulations
to describe time-evolving surfaces



Outline
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I. BACKGROUND III. SIMPLIFICATION IV. PARAMETERIZATION

Track intrinsic triangulation 
while simplifying a surface

[ Gillespie, Springborn, & 
Crane. 2021. Discrete conformal 
equivalence of polyhedral 
surfaces. ACM TOG ]

[ Liu, Gillespie, Chisle!, Sharp, 
Jacobson & Crane. 2023. Surface 
Simplification using Intrinsic 
Error Metrics. ACM TOG ]

Track intrinsic triangulation 
while fla!ening a surface

II. DATA STRUCTURES

Encode an intrinsic 
triangulation on a surface

1

1

22

[ Gillespie, Sharp, & Crane. 2021. 
Integer coordinates for intrinsic 
geometry processing. ACM TOG ]

evolving surfaces evolving surfaces 



I. Background



Status quo: remeshing

• State-of-the-art is robust but slow

• Volumetric techniques

21

[Hu, Zhou, Gao, 
Jacobson, Zorin 

& Panozzo 2018]

[Hu, Schneider, 
Wang, Zorin & 
Panozzo 2020]

runtime: 
43 minutes

runtime: 
47 minutes

Backgroundruntime: runtime: 
47 minutes47 minutes

Background

Wang, Zorin & 
Panozzo 2020]

[Hu, Schneider, 
Wang, Zorin & Wang, Zorin & 

Meshing is much 
easier in 2D

[S
he

w
ch

uk
 1

99
7]

Generate  high-quality meshes in milliseconds
(using Delaunay triangulations with refinement 
[Chew 1993; Shewchuk 1997])

has theoretical
guarantees!

⏲ 80 milliseconds ⏲ 70 milliseconds



3k faces3k faces

Trade offs of extrinsic 
remeshing in 3D

22

triangle quality X ! !

mesh size ! X !

geometric fidelity ! ! X

3k faces 330k faces

Background



Intrinsic triangulations 
sidestep the trade off

23

takes a fraction 
of a second

Background



Triangulations

• Only combinatorial information

• May be irregular (e.g., two edges of a face may be glued together)

24

A triangulation is a collection of 
triangles glued together along 
their edges to form a surface

Background



Extrinsic and intrinsic 
triangulations

25

An extrinsic triangulation is a triangulation 
equipped with vertex positions p : V → ℝ3

An intrinsic triangulation is a triangulation equipped 
with positive edge lengths  satisfying 
the triangle inequality

ℓ : E → ℝ>0

extrinsic

intrinsicintrinsic

easy

hard
(in convex case, see 

[Bobenko &
 

Izm
estiev 2008]) 

I’ll refer to both as “triangle meshes”

Background



Correspondence

• Traditional case: intrinsic triangulation si!ing on 
top of an extrinsic triangulation

• Exact same geometry

26

A correspondence between two 
triangulations is a function 
mapping one onto the other

Background



Common subdivision

27

The common subdivision of two triangulations  
is the result of cu!ing one triangulation along 
the edges of the other

I. Preliminaries

• Contains both triangulations



The challenge of evolving 
intrinsic triangulations

28

• Tracking correspondence between meshes with 
di"erent geometry

[Fisher, Springborn, 
Bobenko & Schröder 2006]

[Sharp, Soliman & 
Crane 2019]

#10 #4

1

1

22

[Gillespie, Sharp 
& Crane 2021]

CORRESPONDENCE WITH
SAME GEOMETRY

CORRESPONDENCE WITH
DIFFERENT GEOMETRY

???

Background



The space of intrinsic 
triangulations is large

29

extrinsic 
triangulations

intrinsic 
triangulations

…

Background



Delaunay triangulations

• Countless useful properties:
• Essentially unique, maximize angles lexicographically, minimize 

spectrum lexicographically, smoothest interpolation, positive 
cotan weights… 

• Characterized by empty circumcircle condition

30

α + β ≤ γ + δ

Background



Intrinsic Delaunay triangulations

• [Indermi!e, Liebling, Troyanov & Clemençon 2001, 
Bobenko & Springborn 2007]: empty intrinsic circumcircles

• Maintain many nice properties.                                 
[Sharp, Gillespie & Crane 2021; §4.1.1]

• Compute by a simple algorithm:

• Flip any non-Delaunay edge until none remain

31

Faster than reading 
the mesh from disk

Background



Intrinsic Delaunay triangulations 
provide good function spaces

32

provide good function spacesprovide good function spacesprovide good function spaces

original mesh intrinsic Delaunay 
triangulation 

Background



Intrinsic Delaunay refinement

Add vertices intrinsically 
to improve quality

3333

[Sharp, Soliman & Crane 2019]

BackgroundBackgroundBackground

Theorem [G., Sharp & Crane 2021]

Let M be a mesh without boundary 
whose cone angles are all at least 60°. 
Then intrinsic Delaunay refinement 
produces a Delaunay mesh with 
triangle corner angles at least 30°



A brief history of intrinsic 
triangulations

34

Foundations: [Alexandrov 1948; Regge 1961]
Geometry Processing: [Fisher, Springborn, Bobenko & Schröder 2006; Bobenko & Springborn 

2007, Bobenko & Izmestiev 2008; Sun, Wu, Gu & Luo 2015; Sharp, 
Soliman & Crane 2019; Fumero, Möller & Rodolà 2020; Gillespie, 
Springborn & Crane 2021; Finnendahl, Schwartz & Alexa 2023]

Background



II. Data Structures for 
Intrinsic Triangulations

Gillespie, Sharp, & Crane. 2021. Integer coordinates for 
intrinsic geometry processing. ACM Transactions on Graphics[ ], Sharp, & Crane. 2021. Integer coordinates for 

31
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Correspondence data structures

36

Overlay Mesh

[Fisher, Springborn, Bobenko 
& Schröder 2006]

• Explicit mesh of common subdivision

• Edge flips nonlocal & expensive

• No further operations

1

1

22
1

1

22

Integer coordinates for 
intrinsic triangulations



Correspondence data structures

37

Overlay Mesh Signposts

[Fisher, Springborn, Bobenko 
& Schröder 2006]

• Explicit mesh of common subdivision

• Edge flips nonlocal & expensive

• No further operations

• Floating point quantities stored at vertices

• Supports many local mesh operations

• Common subdivision connectivity may be 
invalid

[Sharp, Soliman & Crane 2019]

#10 #4

[Fisher, Springborn, Bobenko 
& Schröder 2006]

[Sharp, Soliman & Crane 2019]

#10#10#10#10

Integer coordinates combine 
the best of both worlds

1

1

22
1

1

22

Integer coordinates for 
intrinsic triangulations



roundabouts

( concretely, just 3 integers per edge )

roundabouts

( concretely, just 3 integers per edge )

The integer coordinates data structure

38

normal coordinates 

1

1

22

1

1

22
1

1

22

Integer coordinates for 
intrinsic triangulationsintrinsic triangulations
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Integer coordinates for 
intrinsic triangulations

Normal coordinates

39

Integer coordinates for 
intrinsic triangulations

1 1 1 1

1

1
1 1 1

2

2
22

Foundations: [Kneser 1929; Haken 1961]
Computational Topology: [Schaefer+ 2008; Erickson & Nayyeri 2013]

Geometry Processing: [Hass & Trnkova 2020]



• Just count intersections

40

1

1
1

1

1
1 1

1

2

1

1

1
1

Rules
1. No self-crossings

2. No U-turns

Encoding a curve with 
normal coordinates

automatically satisfied for 
our triangulations 

(also curves may only start or end 
at vertices of the triangulation) 

1

1

22
1

1

22

Integer coordinates for 
intrinsic triangulations



• Encodes sequence of triangles

41

1
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1

1
1 1

1
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1

1

1
1

How much do normal 
coordinates tell us?

1

1

22
1

1

22

Integer coordinates for 
intrinsic triangulations
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1

1
1

Reconstructing the 
curve

1
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Integer coordinates for 
intrinsic triangulations



Reconstructing the 
curve
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1. No self-crossings

2. No U-turns
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Integer coordinates for 
intrinsic triangulations



Reconstructing the 
curve

44
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Integer coordinates for 
intrinsic triangulations



Finding the exact curve 
geometry

• So far: sequence of triangles

• True curve is a straightest path

• Lay out in plane to find 
exact curve

• Normal coordinates determine 
edges exactly

45

Intrinsic 
edges

1

1

22
1

1

22

Integer coordinates for 
intrinsic triangulations



Collections of Curves

• e.g. edges of a triangulation

• Could store multiple sets of normal 
coordinates

# Expensive

• Instead, just store one set of normal 
coordinates

46

Could store multiple sets of normal 

Instead, just store one set of normal 

46

1
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Store just one integer per edge

1

1
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Integer coordinates for 
intrinsic triangulations
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normal coordinates 

1

1

22

normal coordinates roundabouts

The integer coordinates data structure

47
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1
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22

Integer coordinates for 
intrinsic triangulations



Normal coordinates are not enough 
to encode correspondence

• Can’t immediately tell which edge this is

48
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Integer coordinates for 
intrinsic triangulations



Normal coordinates are not enough 
to encode correspondence

• Can’t immediately tell which edge this is

49
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Integer coordinates for 
intrinsic triangulations



Normal coordinates are not enough 
to encode correspondence

• Can’t immediately tell which edge this is

• Roundabouts resolve this ambiguity

50
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Integer coordinates for 
intrinsic triangulations



Roundabouts

51
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Integer coordinates for 
intrinsic triangulations



Roundabouts

• Record how edges interleave

• Store pointer to next edge

• Resolves all ambiguity

52

1
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Integer coordinates for 
intrinsic triangulations



Data structure operations

• Supports a variety of connectivity changes:

53edge flips vertex insertion flat vertex removal 

1

1

22

1

1

22
1

1

22

Integer coordinates for 
intrinsic triangulations

a complete description 
of correspondence



Applications

1

1

22
1

1

22

Integer coordinates for 
intrinsic triangulations



Intrinsic Delaunay refinement

• Recall: improve mesh quality 
by inserting vertices

55

1

1

22
1

1

22

Integer coordinates for 
intrinsic triangulations

# applications

Recall: improve mesh quality 
by inserting vertices



Common subdivisions of 
intrinsic Delaunay refinements

• Integer coordinates can be crucial to recovering the common subdivision

56[Integer co
ordinates]

56[Integer co
ordinates]

[Sharp+ 2019]

Th
in

gi
ID
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94

21

1

1

22
1

1

22

Integer coordinates for 
intrinsic triangulations

# applications



Intrinsic Delaunay refinement 
— validation

• Compute refinements & common subdivisions 
for Thingi10k dataset [Zhou & Jacobson 2016]

• 7696 manifold meshes

• < 1s on most meshes; only took > 1m on 6 meshes

• 100% success rate for refinement & common 
subdivision

• [Sharp, Soliman & Crane 2019] succeed on 
only 69.1% of meshes

57

< 1s on most meshes; only took > 1m on 6 meshes< 1s on most meshes; only took > 1m on 6 meshes

1

1

22
1

1

22

Integer coordinates for Integer coordinates for 
intrinsic triangulationsintrinsic triangulations

# applicationsapplications



Application: PDE-Based 
Geometry Processing

58

result on input 
mesh

Application: PDE-Based 

mean error: 28%

|V| = 2948

|V| = 2948

result on 
Delaunay 

refinement

mean error: 2%

|V| = 11954

mean error: 28%mean error: 28%

Th
in

gi
ID
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43

95
Th

in
gi

ID
 4

43
95

heat method for 
distance along surface 
[Crane, Weischedel & 
Wardetzky 2013]

1

1

22
1

1

22

Integer coordinates for Integer coordinates for 
intrinsic triangulationsintrinsic triangulations

# applicationsapplications



Application: Flip-Based 
Straightest Paths

• FlipOut [Sharp & Crane 2020]:
# computes straightest paths via 

edge flips

59
[Sharp, Soliman 

& Crane 2019] [Integer coordinates]

Application: Flip-Based 

Th
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1
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22
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Integer coordinates for Integer coordinates for 
intrinsic triangulationsintrinsic triangulations

# applicationsapplications



III. Intrinsic Simplification

Liu, Gillespie, Chisle!, Sharp, Jacobson, & Crane. 2023. Surface Simplification 
using Intrinsic Error Metrics. ACM Transactions on Graphics[ ]

III. Intrinsic SimplificationIII. Intrinsic SimplificationIII. Intrinsic SimplificationIII. Intrinsic SimplificationIII. Intrinsic Simplification

!, Sharp, Jacobson, & Crane. 2023. Surface Simplification , Sharp, Jacobson, & Crane. 2023. Surface Simplification , Sharp, Jacobson, & Crane. 2023. Surface Simplification , Sharp, Jacobson, & Crane. 2023. Surface Simplification , Sharp, Jacobson, & Crane. 2023. Surface Simplification ], Sharp, Jacobson, & Crane. 2023. Surface Simplification Liu, Gillespie, Chisle[ , Chisle!



Exact geometry preservation: 
a blessing and a curse

6161

Intrinsic simplification
# motivation

Compute geometric quantities 
directly on the original surface 

Preserves unnecessary 
geometric details

a blessing and a curse

Compute geometric quantities 

8 7 0 , 0 0 0 vertices

2 7 , 0 0 0 , 0 0 0 vertices



Coarse meshes can be 
perfectly adequate

62

perfectly adequate
25

0k
ve

rti
ce

s

Intrinsic simplification
# motivation



1.511λ2 =

1.639λ3 =

0.491λ1 =

Coarse meshes can be 
perfectly adequate

63

⏲ 23.14 s ⏲ 0.9 s

0.484λ1 =
1.639

1.907λ4 =

1.610λ2 =

1.747λ3 = 1.747

1.978λ4 =

Near-identical, but 25x faster

Intrinsic simplification
# motivation

25
0k

ve
rti

ce
s

12
.5k

ve
rti

ce
s



Traditional goal: 
extrinsic simplification

• Find a coarse mesh close in space to the original

• O$en designed to optimize for visual fidelity

64|F|
 = 30

,00
0

|F|
 = 3,

00
0

|F|
 = 30

0

|F|
 = 30

,00
0

|F|
 = 3,

00
0

|F|
 = 30

0
|F| = 30

Intrinsic simplification
# motivation



Intrinsic problems benefit 
from intrinsic simplification

• Extrinsic methods preserve 
irrelevant extrinsic details

• Intrinsic approach opens up a 
larger space of triangulations

• Extreme example: near-
developable surfaces

65

intrinsic simplification 

extrinsic simplification 

input

Intrinsic simplification
# motivation



Inspiration: quadric error 
simplification

66

1. Local simplification operation 2. Accumulated distortion measurements

• Algorithm: repeatedly collapse cheapest edge

• E"icient: all local operations

• Accurate: accumulates error estimates

[Garland & 
Heckbert 1997]

Intrinsic simplificationIntrinsic simplification
# motivation



Intrinsic simplification

67

1. Local simplification operation

intrinsic vertex removal

2. Accumulated distortion measurements

• Algorithm: repeatedly remove cheapest vertex

intrinsic curvature error

Intrinsic simplification



Intrinsic simplification

68

2. Accumulated distortion measurements

• Algorithm: repeatedly remove cheapest vertex

intrinsic curvature error

2. Accumulated distortion measurements

• Algorithm: repeatedly remove cheapest vertex

intrinsic curvature error

1. Local simplification operation

intrinsic vertex removal

Intrinsic simplification



• Intrinsic view: replace curved vertex with flat patch

Intrinsic vertex removal

69

# intrinsic vertex removal 
Intrinsic simplification



Intrinsic vertex removal

• Intrinsic view: replace curved vertex with flat patch

70

parameterize remove flat vertex 

# intrinsic vertex removal 
Intrinsic simplification



Vertex flattening

• Map neighboring triangles to plane such that:

(1) Distortion is low

(2) Boundary edge lengths are preserved

• Discrete conformal parameterization [Springborn, Schröder & Pinkall 2008]

• 1D convex optimization problem

• Flat vertex removal

71

– also a standard operation

# intrinsic vertex removal 
Intrinsic simplification

ℓ

ℓ′

ℓ

ℓ′



1. Local simplification operation

intrinsic vertex removal

• Algorithm: repeatedly remove cheapest vertex

1. Local simplification operation

intrinsic vertex removalintrinsic vertex removalintrinsic vertex removal

• Algorithm: repeatedly remove cheapest vertex

2. Accumulated distortion measurements

intrinsic curvature error

Intrinsic simplification

72

# intrinsic curvature error 
Intrinsic simplification



Distortion: curvature redistribution

73

We approximate the transport cost of this curvature redistribution

# intrinsic curvature error 
Intrinsic simplification



Simplification with the 
curvature transport cost

74

input m
esh

 

coarsening 
via curvature 
transport cost 

# intrinsic curvature error 
Intrinsic simplification



Other transport costs

• Track transport cost of other data in same way

• Can take weighted combinations of costs

75

input m
esh

 

coarsening 
via curvature 
transport cost 

coarsening 
via area

transport cost 

coarsening via 
blended cost 

# intrinsic curvature error 
Intrinsic simplification



Surface correspondence

• Simplifying the mesh changes its geometry

• Breaks existing data structures

• But, only uses a few local operations

• Each is a simple mapping

• Encode correspondence via list of operations

76

edge flip 

vertex scaling 

vertex removal 

" correspondence
Intrinsic simplification

1. Flip edge 1
2. Scale vertex 5
3. Remove vertex 5
4. Flip edge 8
5. Flip edge 12
6. Scale vertex 2
7. Remove vertex 2



Prolongation

• Transfer piecewise-linear functions:

• Just find values at vertices

• Encode by a matrix

77

Transfer piecewise-linear functions:

φ̃ ∈ ℝ|Vc|φ ∈ ℝ|V| P ∈ ℝ|V|×|Vc|

i f (i)
fφ(i) := φ̃( f(i))

" correspondencecorrespondence
Intrinsic simplificationIntrinsic simplification



Examples

Intrinsic simplification



Computing geodesic distance

7979ground truth result on
simplified surface 

III. Intrinsic simplificationIII. Intrinsic simplification
" results

(Computed via [Mitchell, Mount & Papadimitriou 1987]) 400 vertices350k vertices

))

mesh 1000x smaller
.03% relative error

(4x lower than
extrinsic simpli!cation)



Surface hierarchies

80

Surface hierarchiesSurface hierarchies

80| V | =1 , 0 0 9 , 1 1 8| V | =1 , 0 0 9 , 1 1 8

i n p u ti n p u t

| V | = 7 2 k| V | = 7 2 k | V | = 4 k| V | = 4 k | V | = 2 8 2| V | = 2 8 2

| V | = 2 8 8 k| V | = 2 8 8 k | V | = 1 8 k| V | = 1 8 k | V | = 1 k| V | = 1 k " resultsresults
Intrinsic simplificationIntrinsic simplification



Hierarchies accelerate computation

• Accelerate geometric computations

• Even helps with extrinsic 
problems

81

Even helps with extrinsic 

mean curvature flow 
20x speedup

" results
Intrinsic simplification



Robust hierarchy construction
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extrinsic
hierarchy

failed

" results
Intrinsic simplification

[ Liu+ 2021 ]

fails to compute 
correspondence 



Robust hierarchy construction
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extrinsic
hierarchy

failed

" results
Intrinsic simplification

[ Liu+ 2021 ]

fails to compute 
correspondence 



Robust hierarchy construction
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extrinsic
hierarchy

Robust hierarchy constructionRobust hierarchy construction
extrinsic

refinement
+ hierarchy

extrinsic
remeshing
+ hierarchy

intrinsic
hierarchy

(ours) 

m
es

h 
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y

eq
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tio
n 
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eq
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extrinsic
hierarchy

extrinsic
refinement
+ hierarchy

extrinsic
remeshing
+ hierarchy
remeshing
+ hierarchy
remeshing

intrinsic
hierarchy

(ours) 
hierarchy

(ours) 
hierarchy

failed

failed

" results
Intrinsic simplification

[ Liu+ 2021 ]



Performance

• Linear scaling

• Constant work per vertex

85#  in put vertices

time ( s)

1 0 3

1 0 - 1

1 0 0

1 0 1

1 0 2

1 0 4 1 0 5 1 0 6

O ( n )

Removes ~13,000 
vertices per second

" results
Intrinsic simplification



IV. Surface Parameterization

Gillespie, Springborn, & Crane. 2021. Discrete conformal equivalence 
of polyhedral surfaces. ACM Transactions on Graphics[ ]



Parameterization

87

Parameterization

Mapping surfaces into the plane

[ Gao, Huth, 
Lescroart & 
Gallant 2015 ]



Applications of parameterization

88

Texturing 3d models
[ Tim

en 2012 ]



Applications of parameterization

89

Texturing 3d models
[ Tim

en 2012 ]



Applications of parameterization

90

Texturing 3d models
[ Tim

en 2012 ]



The uniformization theorem

91

Image: [Crane, Pinkall & Schröder 2013] 

[Poincare 1907; Koebe 1907; Troyanov 1991]

Any surface is conformally 
equivalent to a surface of 
constant curvature.

conformal map = angle-preserving 

smooth maps with helpful properties 

Parameterization

conformal map = angle-preserving 



The discrete uniformization theorem

9292

 [Gu, Luo, Sun & Wu 2018; Springborn 2019]

Any valid† vertex curvatures 
can be realized by some 
discrete conformal map.

†i.e.  and satisfying Gauss-Bonnet≤ 2π

Parameterization



The discrete uniformization theorem

93

 [Gu, Luo, Sun & Wu 2018; Springborn 2019]

easy to lay 
out in plane 

Parameterization



The discrete spherical uniformization theorem

94

 [Springborn 2019]

Any simply-connected triangle 
mesh is discretely conformally 
equivalent to a mesh whose 
vertices lie on the unit sphere

Parameterization



Discrete uniformization in action

95
low-quality meshes

 [Gillespie, Springborn, & Crane. 2021]

[ Sawhney & Crane 2017 ]



Discrete uniformization in action

96
di"cult cone constraints

 [Gillespie, Springborn, & Crane. 2021]
Discrete uniformization in action

[ Sawhney & Crane 2017 ]



Discrete uniformization in action

97
di"cult cone constraints

 [Gillespie, Springborn, & Crane. 2021]
Discrete uniformization in action

[ Sawhney & Crane 2017 ]

not locally 
injective 

provably 
locally 

injective 



Discrete uniformization in action

98
maps to the sphere 

 [Gillespie, Springborn, & Crane. 2021]

guaranteed 
globally 
injective 



Triangle mesh ! hyperbolic polyhedron

99

 [Bobenko, Pinkall & Springborn 2010]

Triangle 
mesh

“Decorated 
ideal hyperbolic 

polyhedron”

Conformal changes to 
Euclidean geometry

Changes preserving 
hyperbolic geometry

To encode an evolving Euclidean polyhedron …

Parameterization

… we can store a static hyperbolic polyhedron.



Intrinsic triangulations of 
hyperbolic polyhedra

100

similar to ordinary intrinsic triangulations

Parameterization

ad j ust h orosph eres

hyperbolic 
edge flip 



Data structures for hyperbolic 
intrinsic triangulations

• Existing data structures naturally generalize

101101

integer coordinates 

hyperbolic 
signposts 

[Fisher, Springborn, 
Bobenko & Schröder 2006]

[Sharp, Soliman & 
Crane 2019]

#10 #4

prohibitively 
complex #oating point 

errors  

[Ours]

Parameterization
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Projective interpolation

• [Springborn, Schröder & Pinkall 2008]: projective interpolation

• Hyperbolic isometry

• [Ours]: novel projective interpolation using the hyperboloid model
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g eod esic

Poincaré diskid eal
poin t id eal

poin t

H 2 H 2

H 2

id eal poin t

h orocycle h orocycle

id eal
trian g le

id eal
trian g le

K lein disk

hyperboloid

g eod esic

h orocycle

g eod esic
id ealid ealid ealid ealid ealtrian g letrian g letrian g letrian g letrian g letrian g letrian g letrian g letrian g le

Parameterization



Variable triangulation > fixed triangulation

103
Fixed triangulation (CETM) Variable triangulation (CEPS)

Parameterization



104

Validation

32,744 low-quality meshes
[Zhou+ 2016]

114 di"icult cone configurations
[Myles+ 2014][Myles+ 2014]

265 spherical parameterization
problems  [Yeo+ 2009; Boyer+ 2011]

98% 
success

100% 
success

100% 
success



Uptake

105

[ Lenihan et al. 2023 ]
3D printing

optimal transport
[ Genest et al. 2024 ]

generative models 
( ongoing )

[ Bobenko & Lutz 2023 ]
geometric topology 

useful to people in a variety of areas  



Thanks for 
listening

106

1

1

22



Supplemental Slides



108

Bad basis functions

Input basis function Intrinsic basis function

[Sharp, Soliman & Crane 2019]



Delaunay flip complexity
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10 100 10 4 1010 3 5 10 6

1

10

100

10 4
10 5

10 3

10 6

[Sharp, Soliman 
& Crane 2019]



Units for transport cost

110

coarsening 
via curvature 
transport cost 

coarsening 
via area

transport cost 

coarsening via 
blended cost 

integrated curvature is 
dimensionless

(angle => units of radians)

area has units 
of area 

what units make 
sense here? 

Easy resolution: 
measure mass fraction

rather than mass

e.g.  fraction of total 
area or curvature 

present at a vertex

then everything is 
unitless 



Exact isometric embeddings

111

(intrinsically) convex polyhedra general polyhedra
unique convex embedding into 
[Alexandrov 1942]

ℝ3

constructive proof/algorithm 
[Bobenko & Izmestiev 2008]

many embeddings into 
[Burago & Zalgaller 1960, 1995]

ℝ3

(may need to flip edges) (may need to subdivide mesh many times) 

many embeddings into 
[Burago & Zalgaller 1960, 1995]

(may need to subdivide mesh many times) 
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Starting from Delaunay

D elaun ayn on - D elaun ay

=

in put ( polyh ed ral)in put ( polyh ed ral)in put ( polyh ed ral)

==

Parameterization



Final algorithm

137

#ip to (Euclidean) 
Delaunay 

solve for discrete 
conformal map 

lay out in 
plane 

extract 
correspondence 

interpolate via 
hyperboloid 

Parameterization



Applications of parameterization

141

initial shape target shape

[Konaković-Luković et al. 2018]

Fabrication

[Konaković et al. 2016]

[Nojoomi et al. 2021]



Speedup vs error in geodesic distance

142

|V| = 20k |V| = 10k |V| = 100 |V| = 10

ground 
truth 

speedup/error: 3x / 0.0002% 840x / 0.2% 4880x / 1.5%

" results
Intrinsic simplification
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!xed triangulation

Interpolation in the 
hyperboloid model

!xed triangulation

III. Parameterization



144

!xed triangulation variable triangulation

Interpolation in the 
hyperboloid model

!xed triangulation

III. Parameterization



Low rank all-pairs distance 
matrix approximation

145

…

…

|V|=6k

|Vc|=300

All pairs distance matrix 
D ∈ ℝ|V|×|V|

Prolongation operator 
P : ℝ|Vc| → ℝ|V|

Approximate distance matrix 
D̂ = PD̃P⊤

Distance matrix of 
simplified mesh :

1650x faster
1.4% relative 
error

" results
II. Intrinsic simplification



Application: Shape Correspondence

• Uniformization can been used to find correspondences 
between shapes

146

Image: [Schmidt, Campen, Born & Kobbelt 2020]

Uniformization can been used to find correspondences 

Image: [Schmidt, Campen, Born & Kobbelt 2020]

Image: [Koehl & Hasse 2015]

IV. Discrete uniformization



Solution accuracy

147

III. Intrinsic simplification
" results

in put Q E M

[ L iu et al 2 0 2 1 ]

I C E

g roun d
truth

d i!eren ced i!eren ce d i!eren ced i!eren ce



Distortion

148

Distortion

area distortion anisotropic distortion
i.e. quasiconformal dilatation

(mean 1.115) 
(mean 8.1%) 

III. Intrinsic simplificationIII. Intrinsic simplification
" resultsresults

|V| = 56k

|Vc| = 200

0

max

1

18

0

max

min

0

120%

-120%



The importance of memory

149

The importance of memoryThe importance of memory

149

The importance of memory

Memoryless transport cost Full transport cost

Vertex removal



Adaptive simplification
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in put an isotropic coarsen in g
( max  prin cipal d irection )

an isotropic coarsen in g
( min  prin cipal d irection )

opic coarsen in g
( max  prin cipal d irection )

opic coarsen in g
( max  prin cipal d irection )

opic coarsen in gin put an isotr
( max  prin cipal d irection )

ropic coarsen in g
( max  prin cipal d irection )

opic coarsen in g
( max  prin cipal d irection )

opic coarsen in gan isot
( max  prin cipal d irection )

an isotropic coarsen in g
( min  prin cipal d irection )( min  prin cipal d irection )

opic coarsen in g
( min  prin cipal d irection )

opic coarsen in gopic coarsen in g
( max  prin cipal d irection )

opic coarsen in g
( max  prin cipal d irection )

opic coarsen in g an isot
( min  prin cipal d irection )in put ad aptive coarsen in g h eat k ern el

| V | = 9 9 , 0 3 7 | V | = 1 0 0 0

in put con strain ed  coarsen in g Poisson  solve

con strain tscon strain ts

III. Intrinsic simplification
" results



Geodesic Voronoi diagrams 

151

III. Intrinsic simplification
results

Geodesic Voronoi diagrams 
III. Intrinsic simplification

" results

|Vc | = 500

|V| = 63k

ground truth 

result on
simplified surface 

7207.4 ms

3.2 ms
(2252x faster)

only 1% vertices 
misclassified 



Intrinsic Delaunay refinement
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input 
mesh 

computation 
on input mesh computation on 

intrinsic Delaunay 
triangulation

input 
mesh 
input 
mesh 
input 

computation 
on input mesh 
computation 

on input mesh 
computation computation on 

intrinsic Delaunay 
computation on 

intrinsic Delaunay 
computation on computation on 

intrinsic Delaunay 
computation on 

intrinsic Delaunay 
computation on computation on 

intrinsic Delaunay 
computation on 

intrinsic Delaunay 
computation on computation on 

intrinsic Delaunay 
refinement



Near-developable surfaces

159

intrinsic simplification 

extrinsic simplification 

III. Intrinsic simplification
" results



Challenging datasets

161* connected components of models from $ingi10k

Dataset # Models Success rate Average time

MPZ
[Myles+ 2014] 114 100% 8s

Thingi10k
[Zhou+ 2016] 32,744* 97.7% 57s†

brain scans
[Yeo+ 2009] 78 100% 493s

anatomical surfaces
[Boyer+ 2011] 187 100% 15s

† average time on models with > 1000 verticesconnected components of models from 

bad meshes

di"icult conesdi"icult cones

co
ne
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IV. Discrete uniformization
" results



Ptolemy flips improve 
performance

162

T h in g i1 0 kM PZ

10 100 1 k 1 0 k 1 0 0 k
mesh  siz e ( # vertices)

0. 5x

1x

2x
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p C E PS  be!er

U E F  be!er
1k 10k 100k

mesh  siz e ( # vertices)

0. 5 x

1x

2x
sp

ee
du

p
Ptolemy be!er

stoppin g  to flip be!er

sp
ee

du
p
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|V |=25k

|V |=50k

|V |=3k



Boundary conditions

163

circular disk

scale control
convex

polygonal

minimal area
distortion orthogonal

IV. Discrete uniformization
" results



Multiply-connected domains
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[H
ef

et
z+

20
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]
[H

ef
et

z+
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19
]

Hole fillingNo hole filling



Projective interpolation 
improves quality
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Th
in

g 
ID

 5
00

09
6

L in ear Proj ective

M esh

IV. Discrete uniformization
" results
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ad j ust h orosph eres

Discrete conformal equivalence 
across triangulations

167

in put polyh ed on

vertex  scalin g

in valid  E uclid ean  metric

(lengths violate triangle inequality)

ad j ust h orosph eres h yperbolic ed g e flip

id eal D elaun ay trian g ulation

in trin sic D elaun ay trian g ulation

Ptolemy flips



Optimization with Ptolemy 
Flips

• Express energy and derivatives in terms of edge lengths 
[Springborn 2019]

• Hand to any optimization algorithm

168

Ptolemy flips
evaluate
formulascale by u
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Where to store integer coordinates

181

store on 
extrinsic 

edges 

store on 
intrinsic 

edges 
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Integer coordinates for 
intrinsic triangulations




