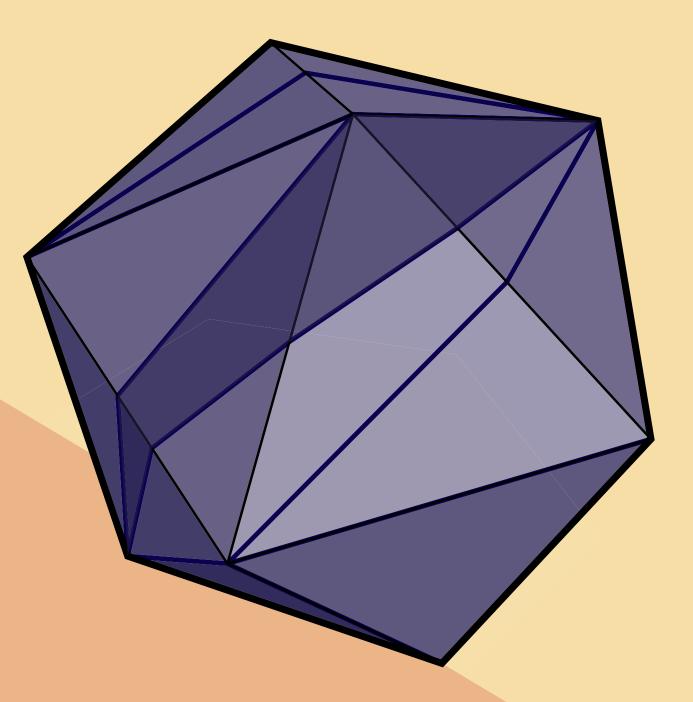
Evolving Intrinsic Triangulations

Committee: Keenan Crane (Chair) James McCann Ioannis Gkioulekas Boris Springborn

Thesis Defense

Mark Gillespie, Carnegie Mellon University

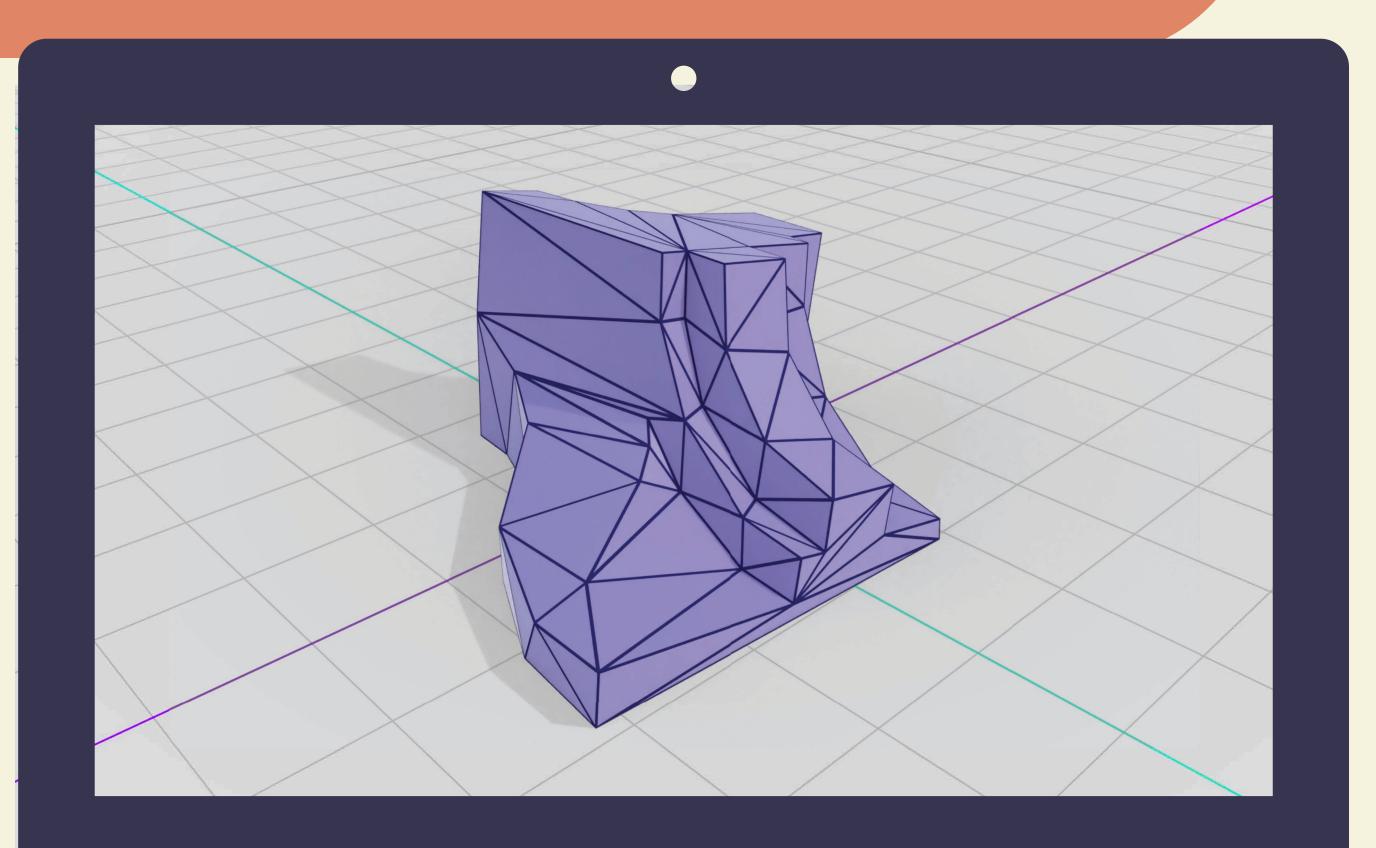


Monday, 22 April 2024

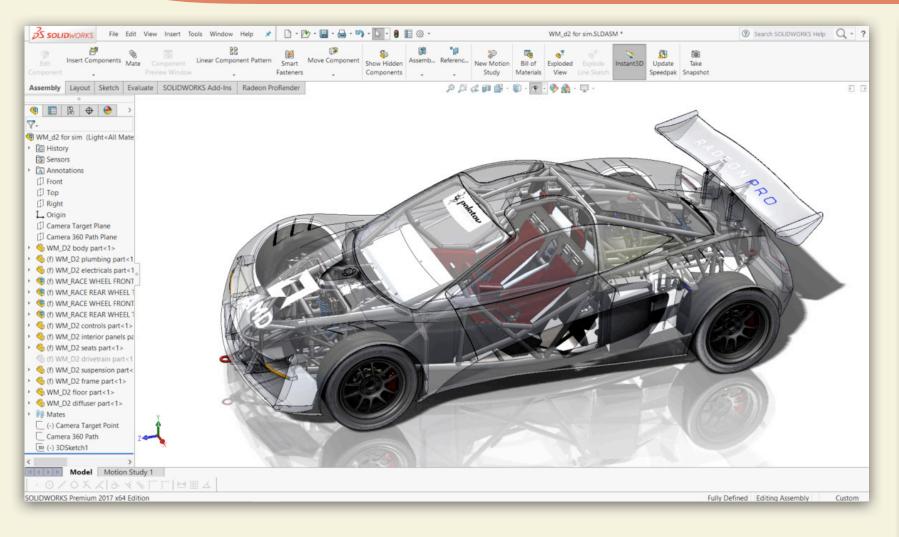
My field: geometry processing

2

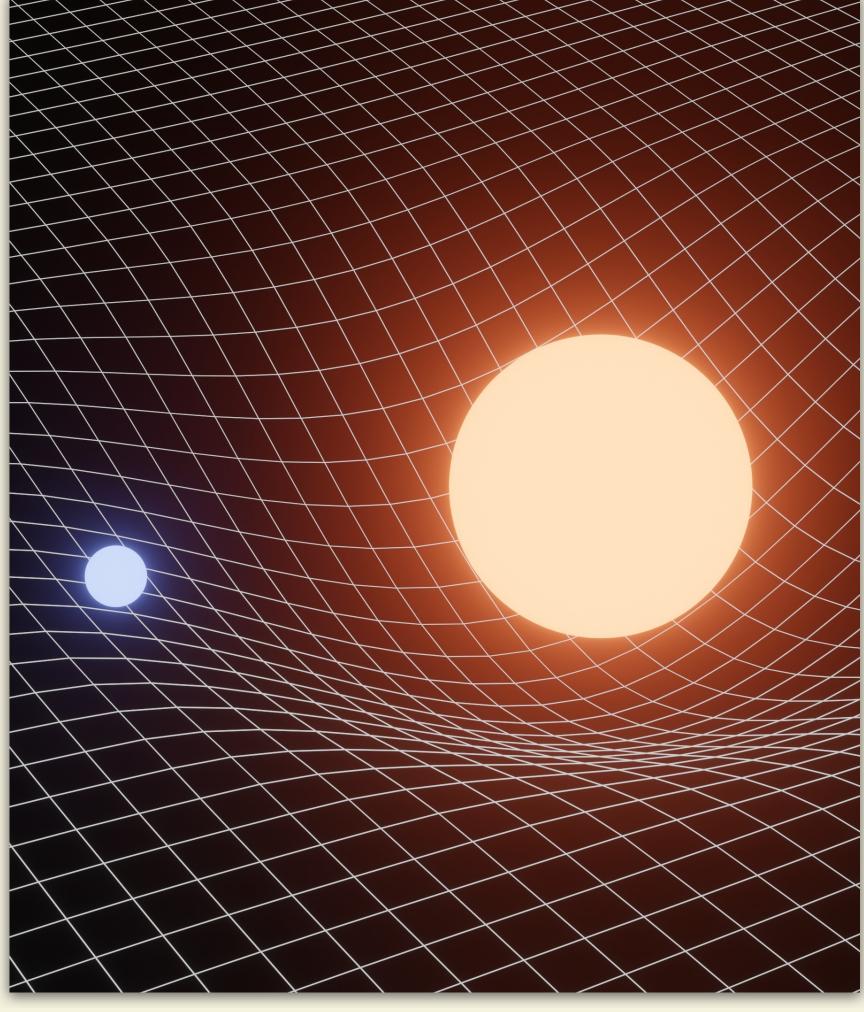
My field: geometry processing

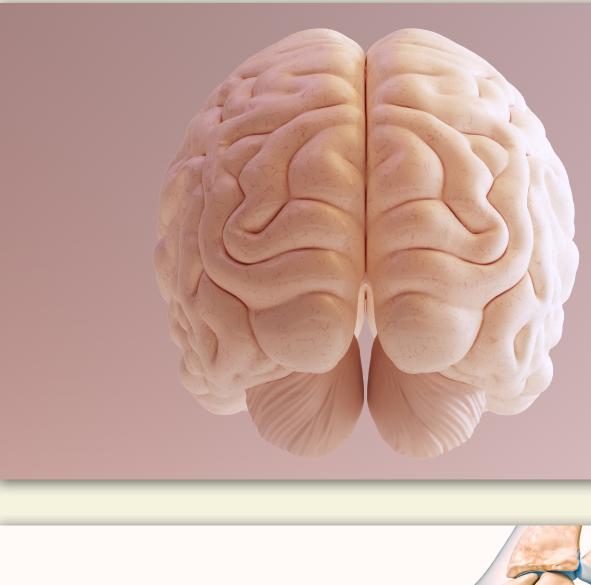


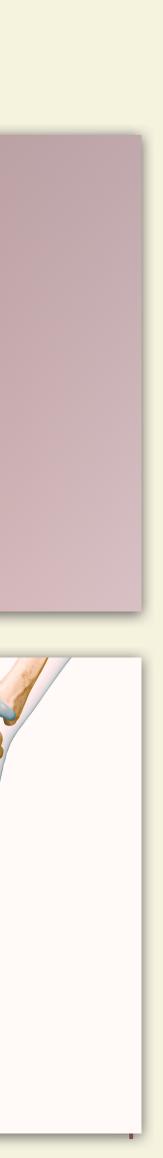
Geometric data is all around us

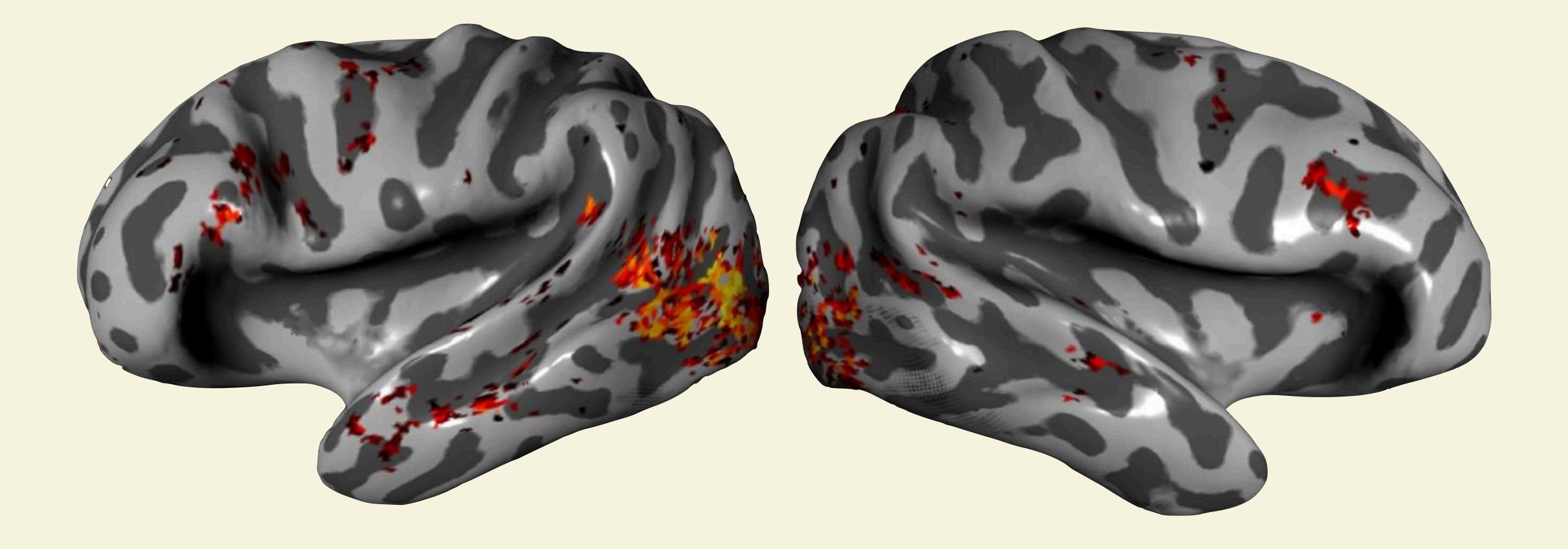




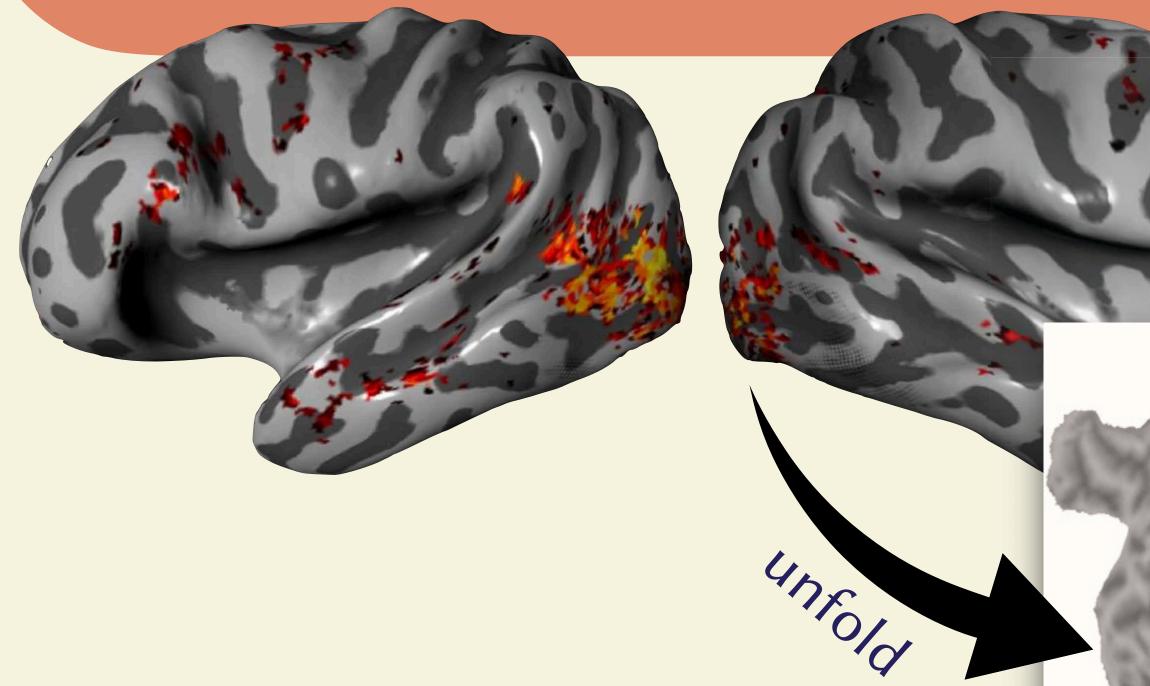




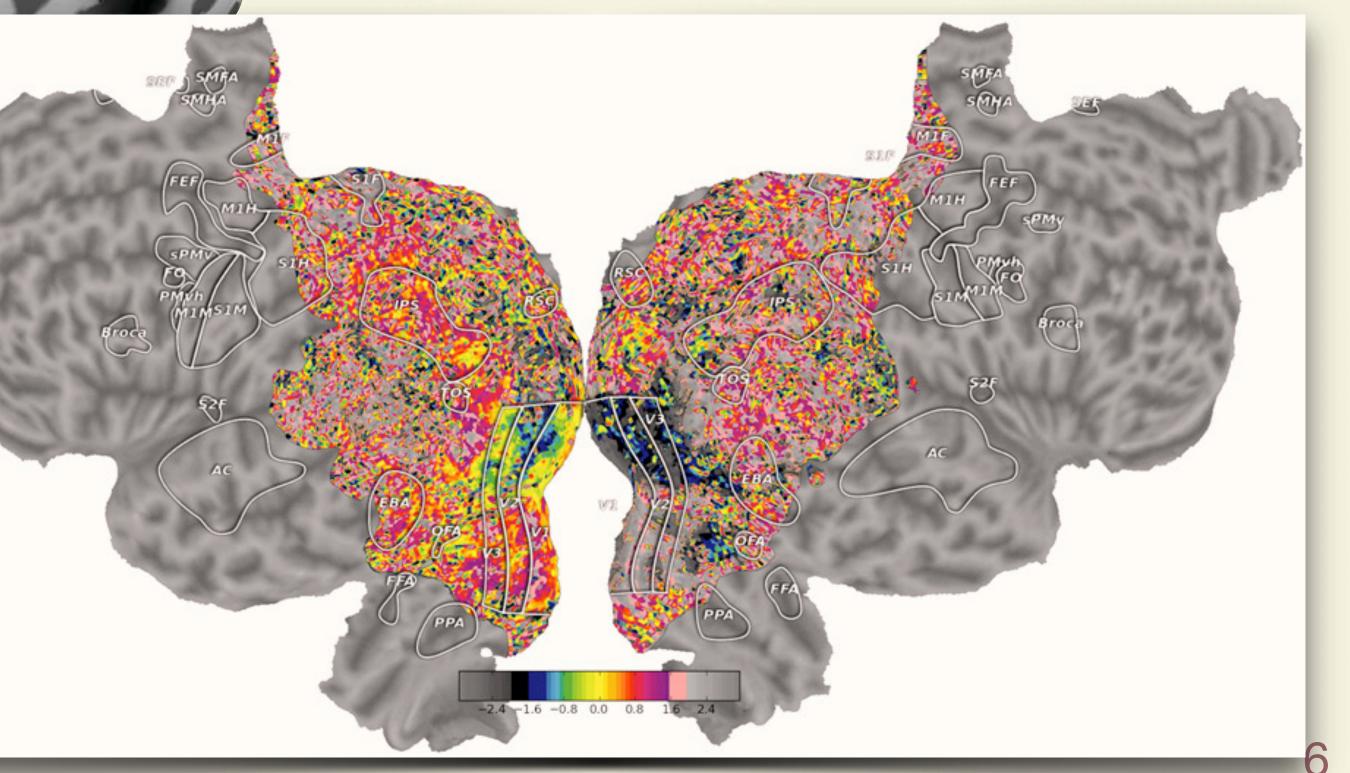




[Gao, Huth, Lescroart & Gallant 2015]

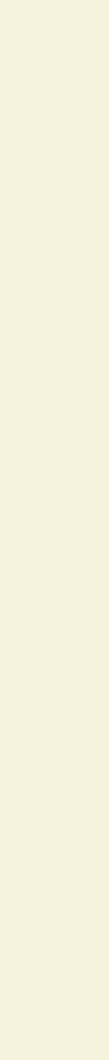


[Gao, Huth, Lescroart & Gallant 2015]

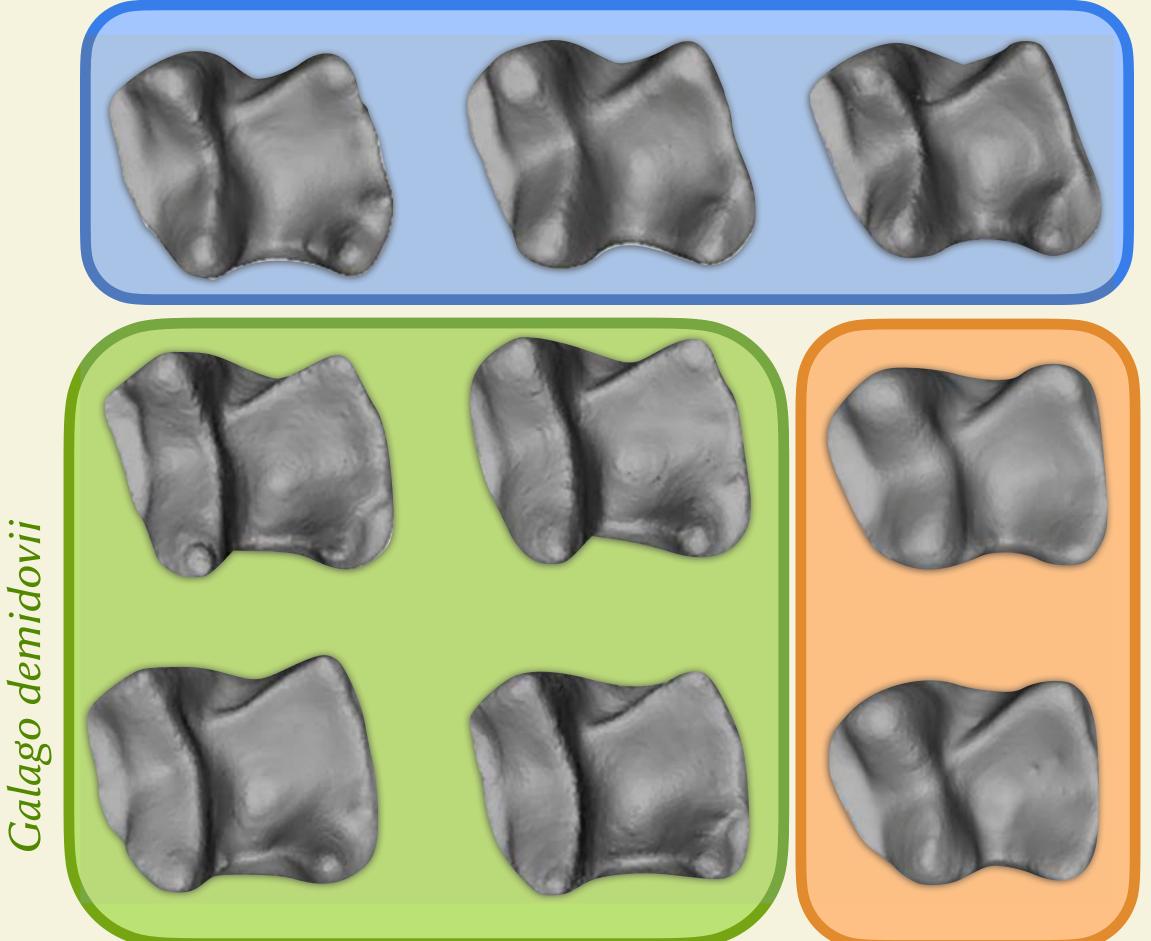


[Boyer, Lipman, St. Clair, et al. 2011]

Galago senegalensis

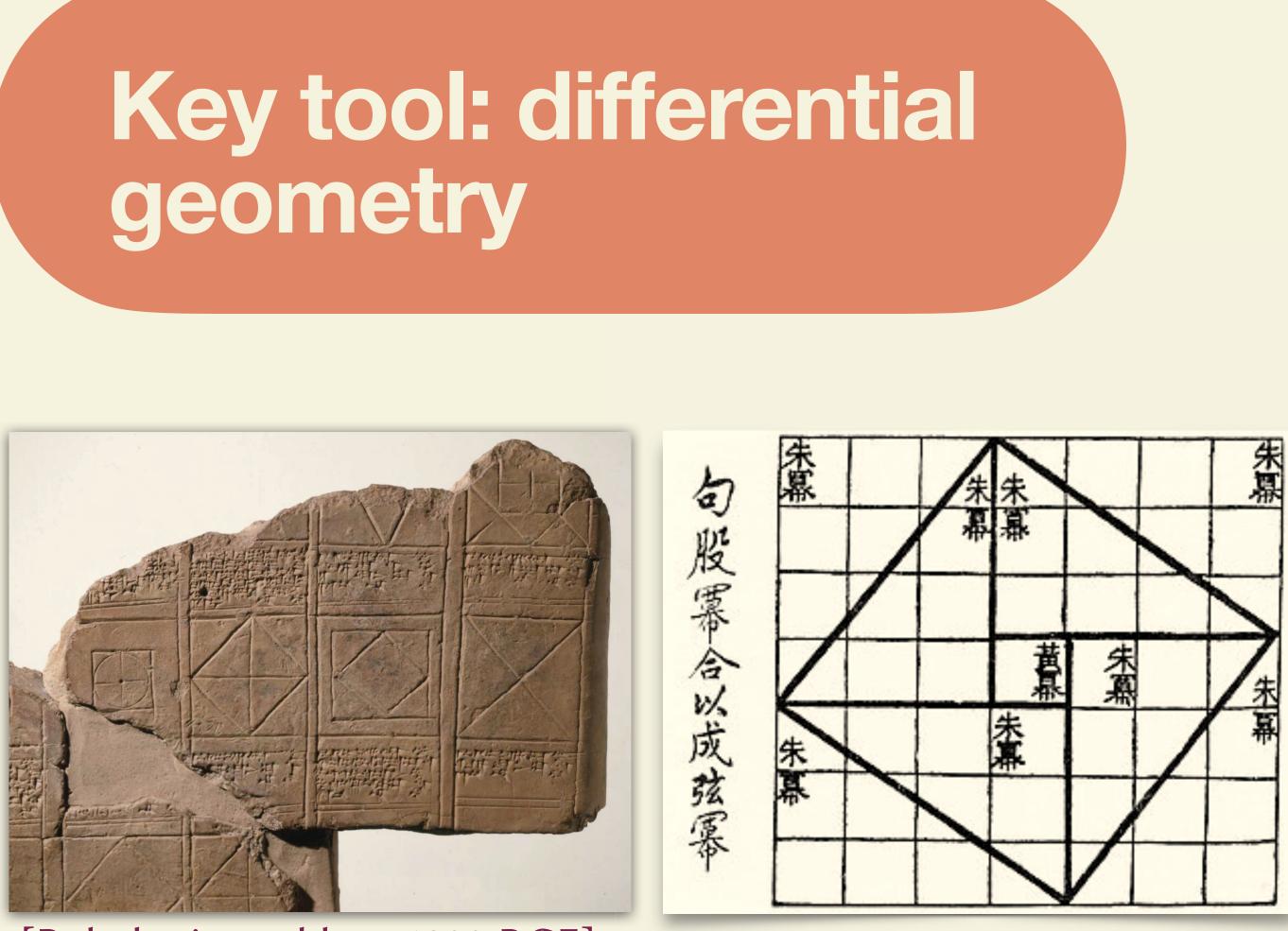


[Boyer, Lipman, St. Clair, et al. 2011]



Galago senegalensis

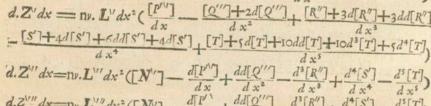
Galago alleni

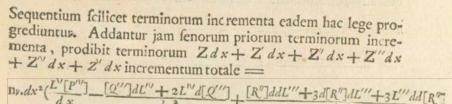


[Babylonian table, c.1800 BCE]

[Zhou, c. 200]

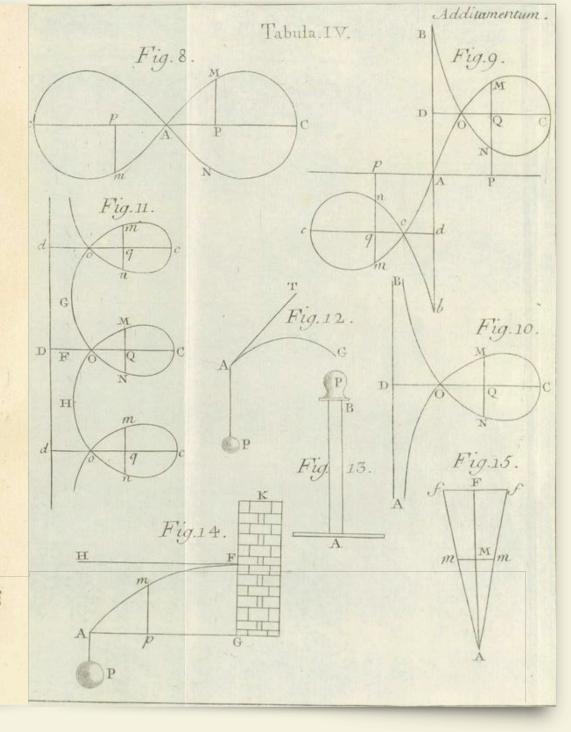


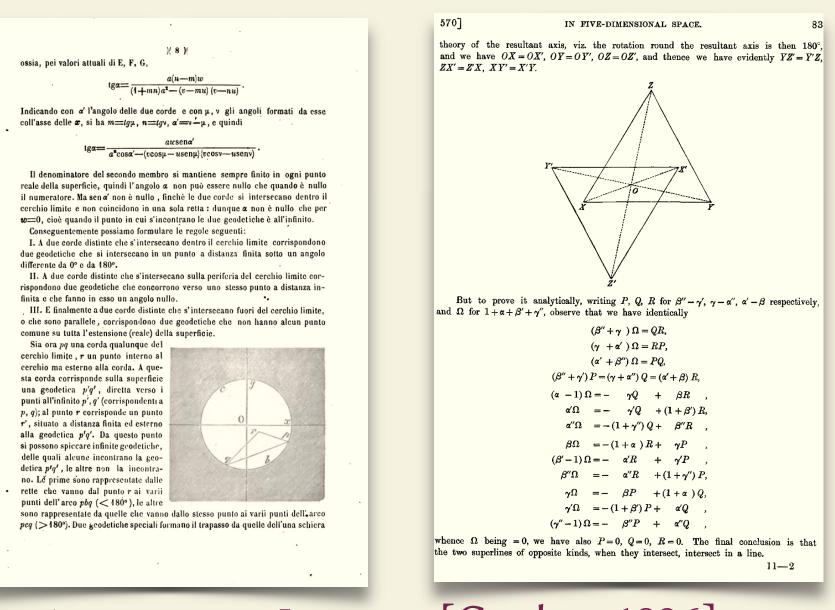




$= \frac{[s']d^{\mathbf{k}}l'' + 4d[s']ddl'' + 6dl''dd[s]}{4dl'' + 6dl''dd[s]}$	[] + 4L"d' [S']	dx3	1 3	
Euleri de Max. & Min,	M		*	

[Euler, 1744]



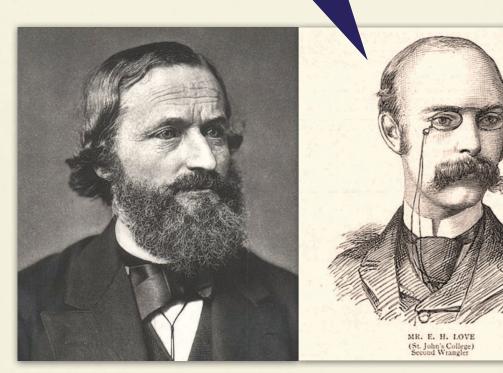


[Beltrami, 1868]

Working with 3D shapes is hard

Example: predict sound by finding vibrational modes

build *bilaplacian* matrix and find eigenvectors



Working with 3D shapes is hard

Example: predict sound by finding vibrational modes

Result:

Problem: triangle quality

- *Same* number of vertices
 - Not a resolution issue
- *Same* geometry
 - Not an approximation issue

4x lower error measured with *a posteriori* error estimates

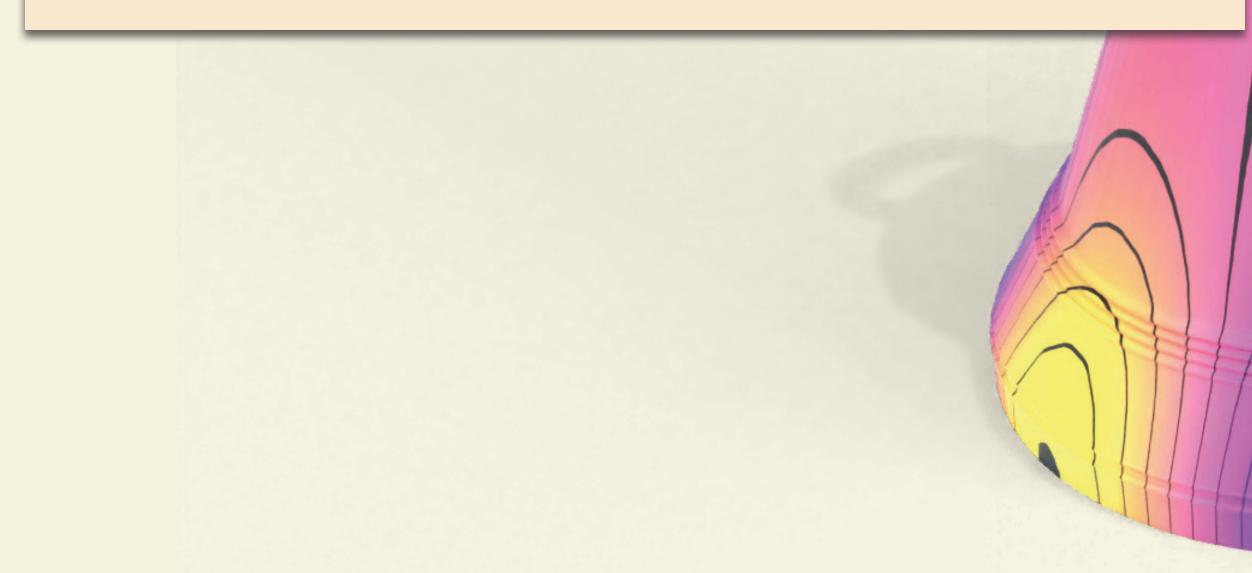
using good triangles

using bad triangles

Problem: triangle quality

Problem. Our triangles play two roles. They encode both:

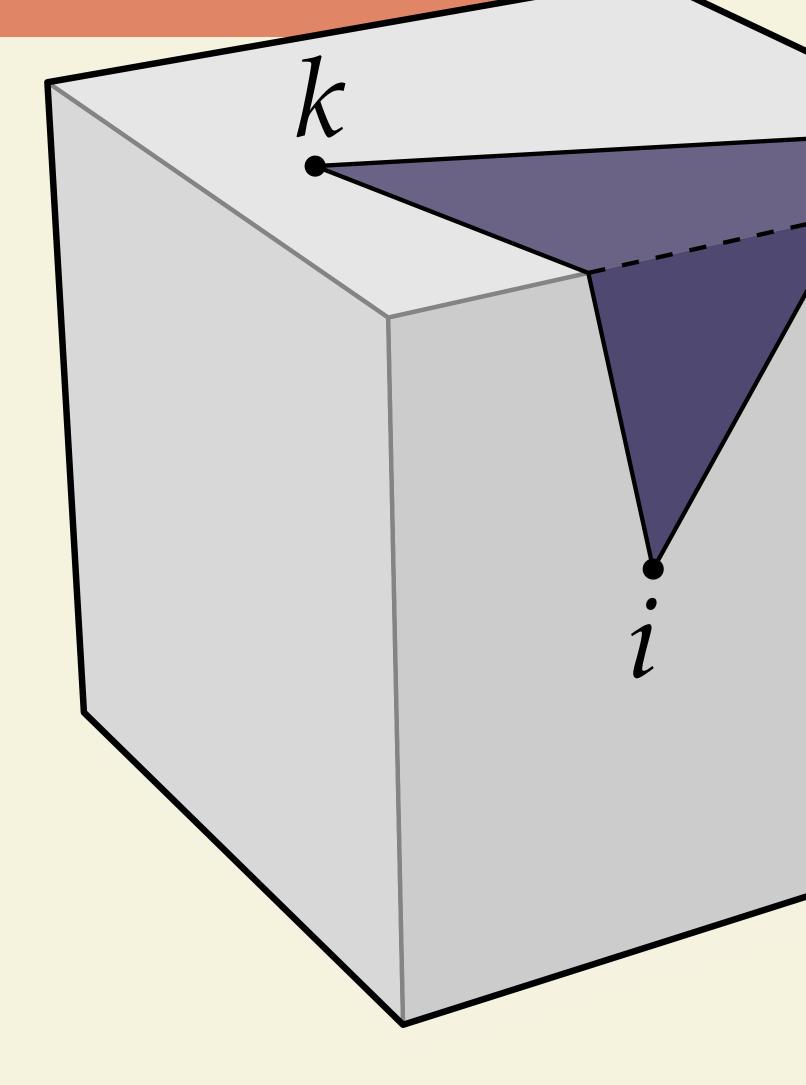
- the geometry of a surface 1.
- a space of functions on that surface. 2.



using good triangles

using bad triangles

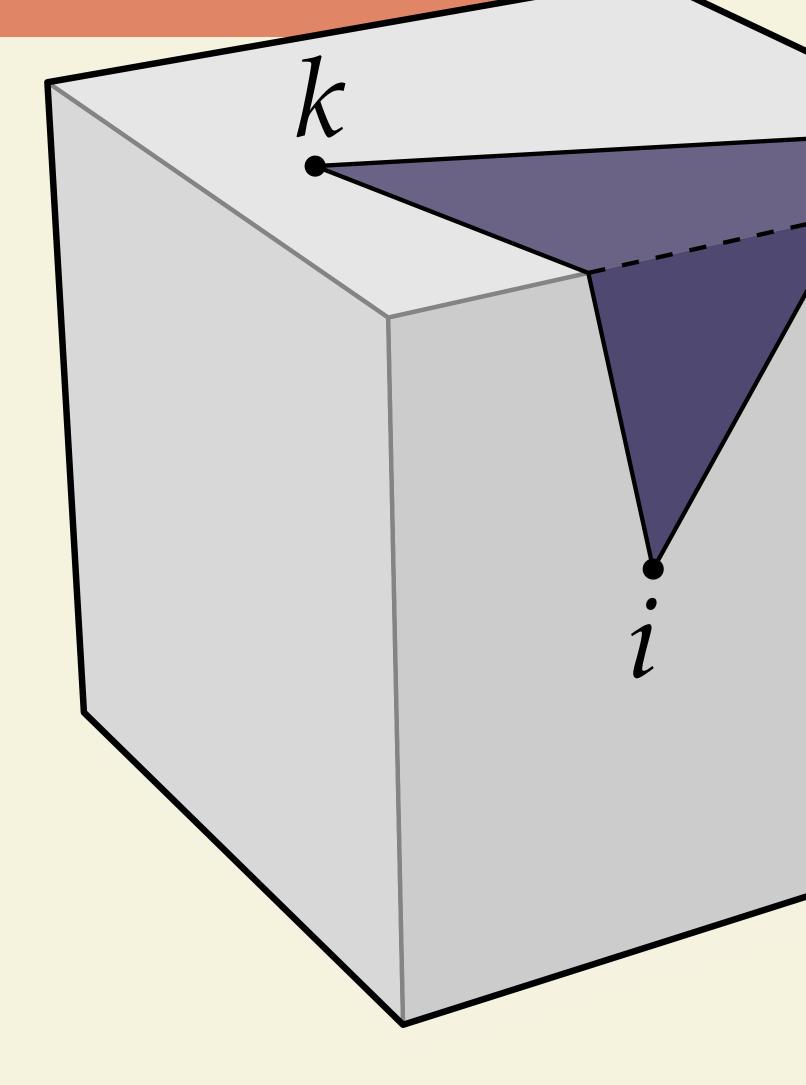
Intrinsic triangles



broadening our idea of what a triangle is

 \implies flexibility to build models out of good triangles

Intrinsic triangles



Clean solution to triangle quality issues *if* you have a fixed background surface

16

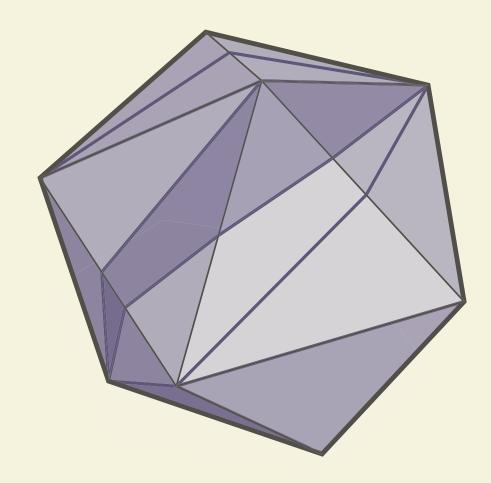
What if there is no fixed background surface?

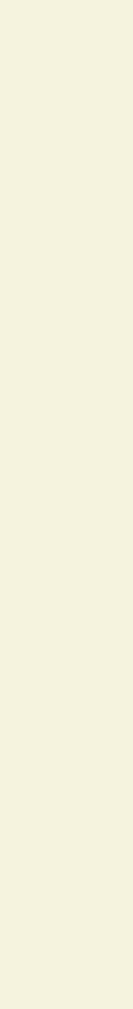
What if our geometry changes over time?

17

Evolving intrinsic triangulations

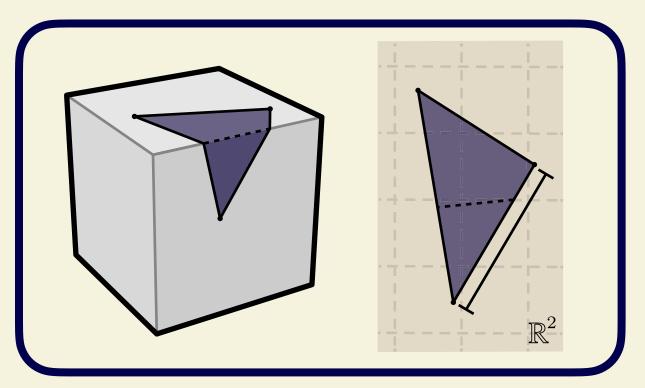
In my thesis, I present data structures & algorithms for using intrinsic triangulations to describe time-evolving surfaces



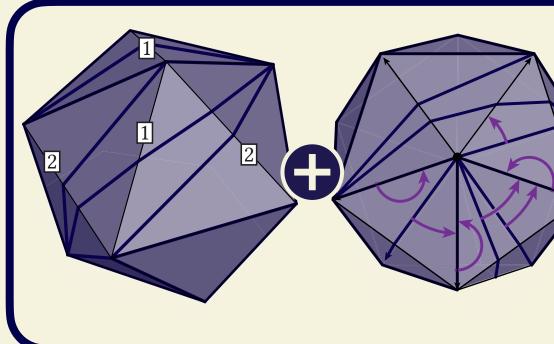


Outline

I. BACKGROUND



II. DATA STRUCTURES



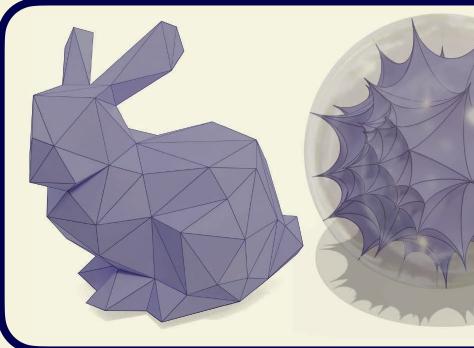
[Gillespie, Sharp, & Crane. 2021. Integer coordinates for intrinsic geometry processing. *ACM TOG*]

Encode an intrinsic triangulation on a surface

evolving surfaces

III. SIMPLIFICATION

IV. PARAMETERIZATION



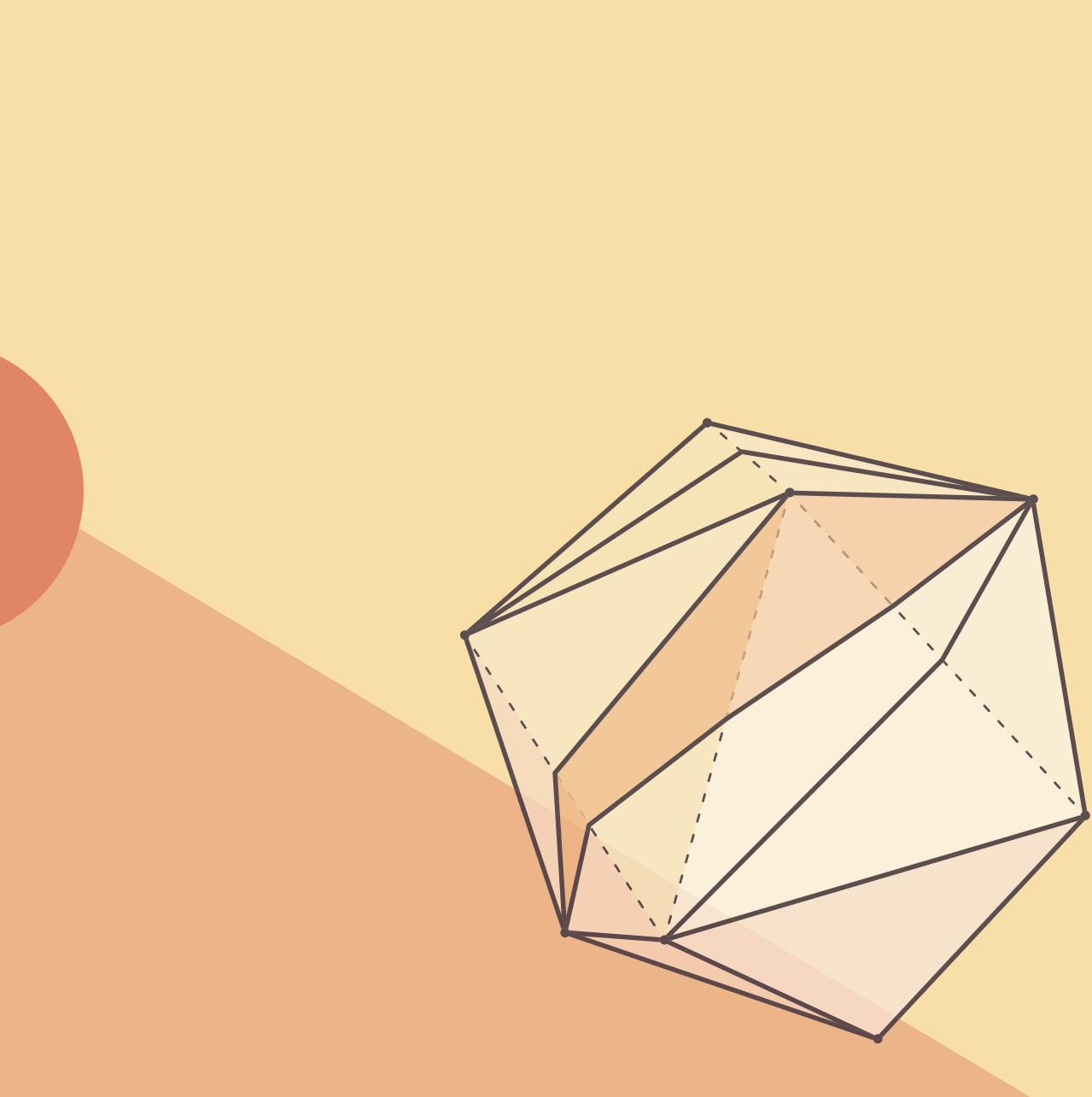
[Liu, Gillespie, Chislett, Sharp, Jacobson & Crane. 2023. Surface Simplification using Intrinsic Error Metrics. ACM TOG]

Gillespie, Springborn, & Crane. 2021. Discrete conformal equivalence of polyhedral surfaces. ACM TOG]

Track intrinsic triangulation while *simplifying* a surface

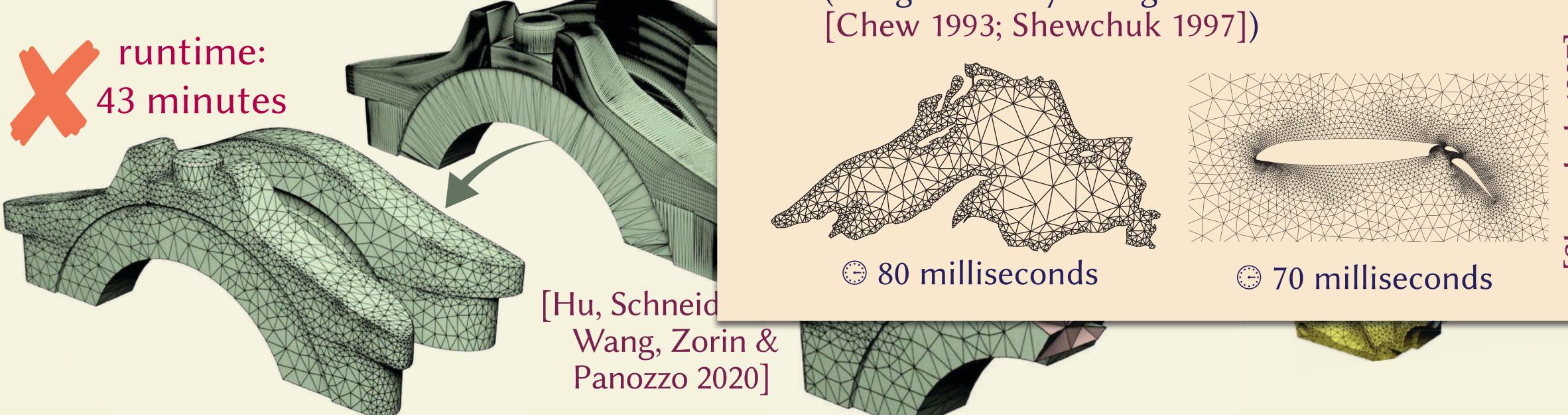
Track intrinsic triangulation while *flattening* a surface

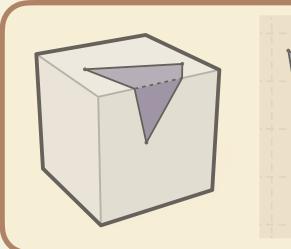
I. Background



Status quo: remeshing

- State-of-the-art is robust but slow
 - Volumetric techniques





runtime: 47 minutes

Meshing is much easier in 2D

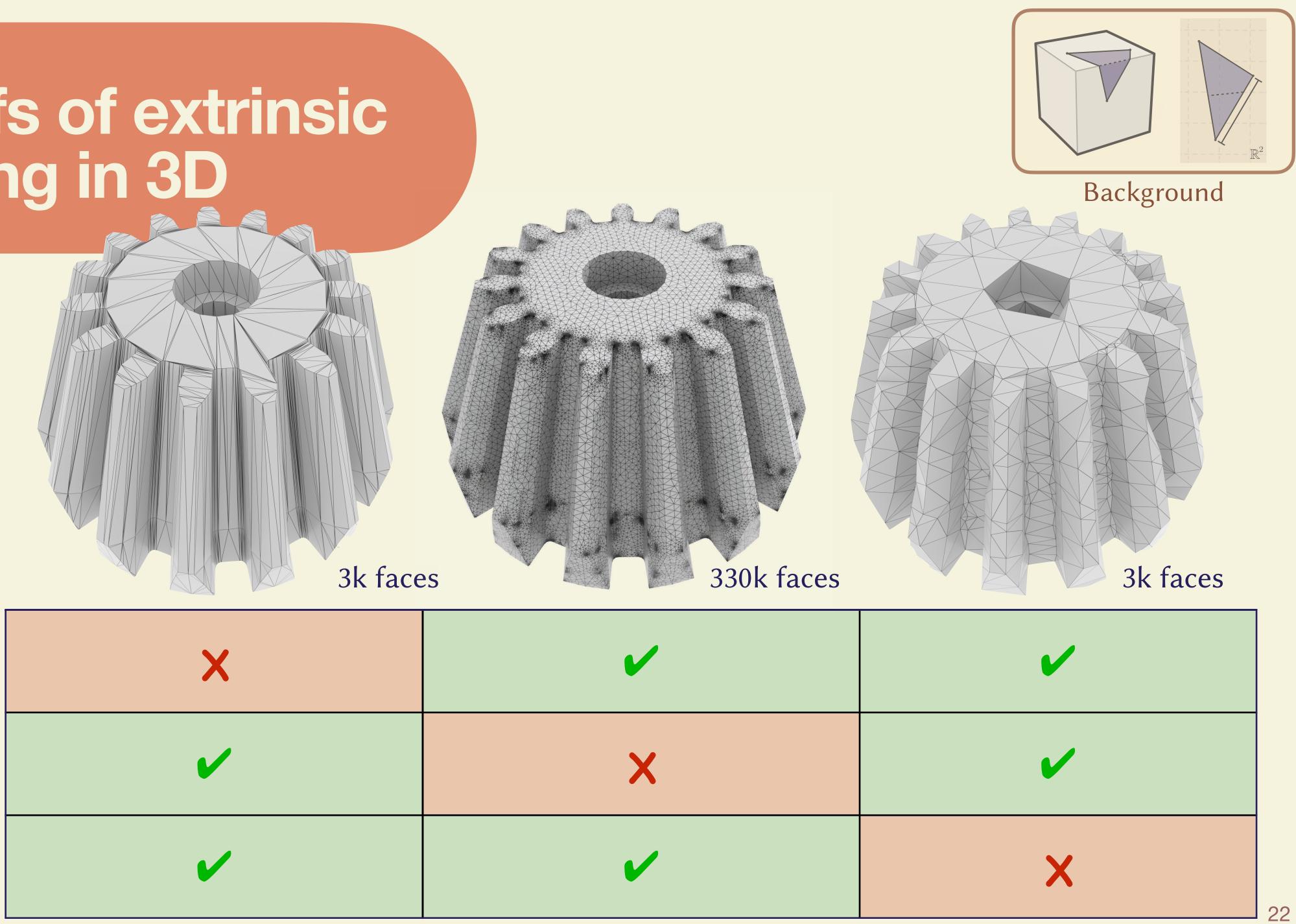
has theoretical guarantees!

Generate high-quality meshes in milliseconds

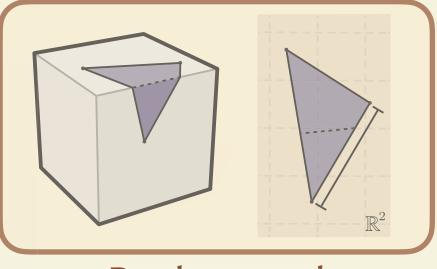
(using Delaunay triangulations with refinement

Trade offs of extrinsic remeshing in 3D

triangle quality mesh size geometric fidelity



Intrinsic triangulations sidestep the trade off



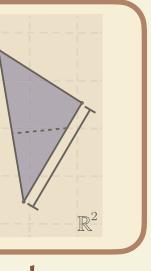
takes a fraction of a second

Triangulations

A triangulation is a collection of triangles glued together along their edges to form a surface

- Only combinatorial information
- May be *irregular* (*e.g.*, two edges of a face may be glued together)



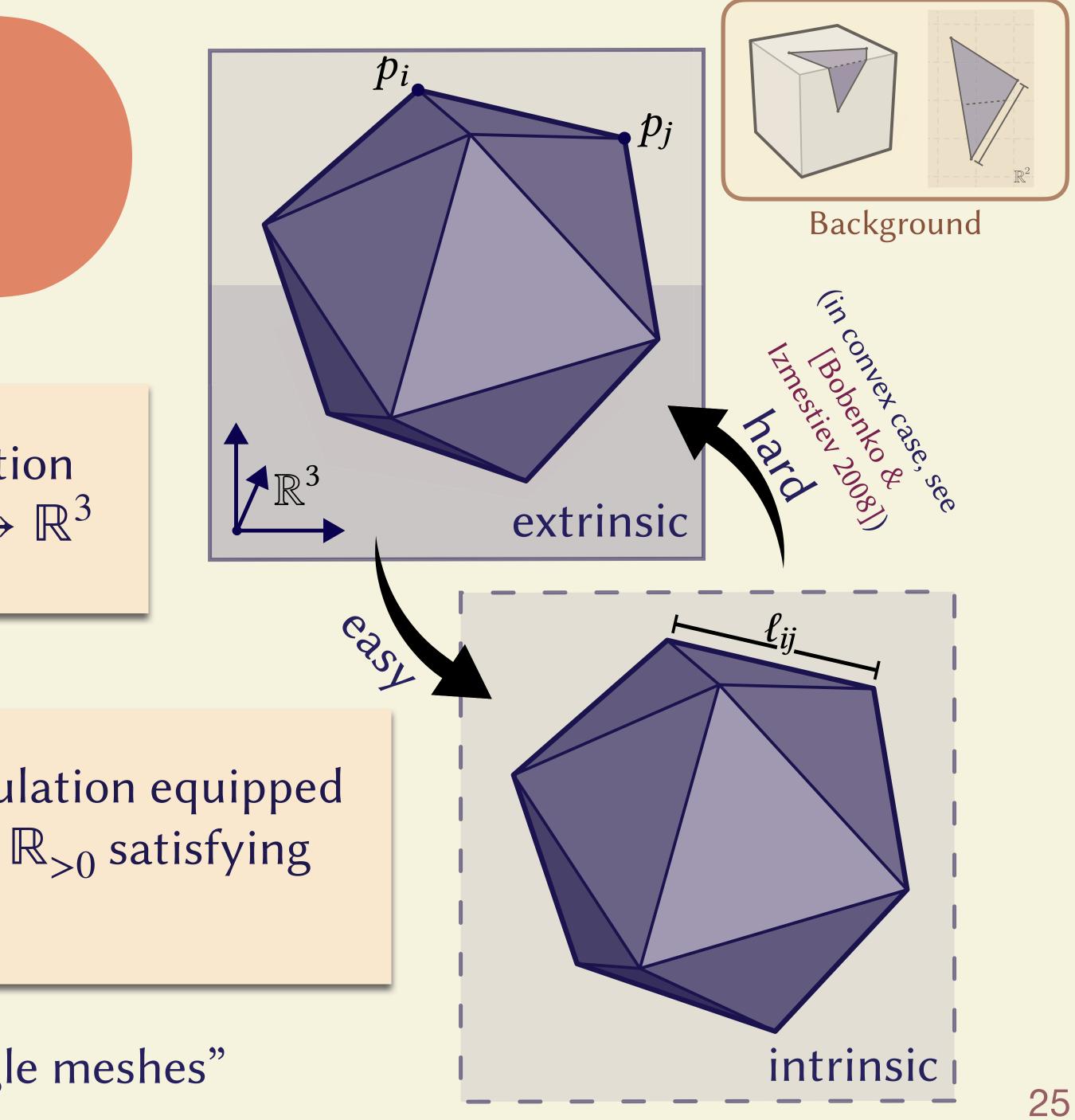


Extrinsic and intrinsic triangulations

An *extrinsic triangulation* is a triangulation equipped with vertex positions $p: V \rightarrow \mathbb{R}^3$

An *intrinsic triangulation* is a triangulation equipped with positive edge lengths $\mathscr{C} : E \to \mathbb{R}_{>0}$ satisfying the triangle inequality

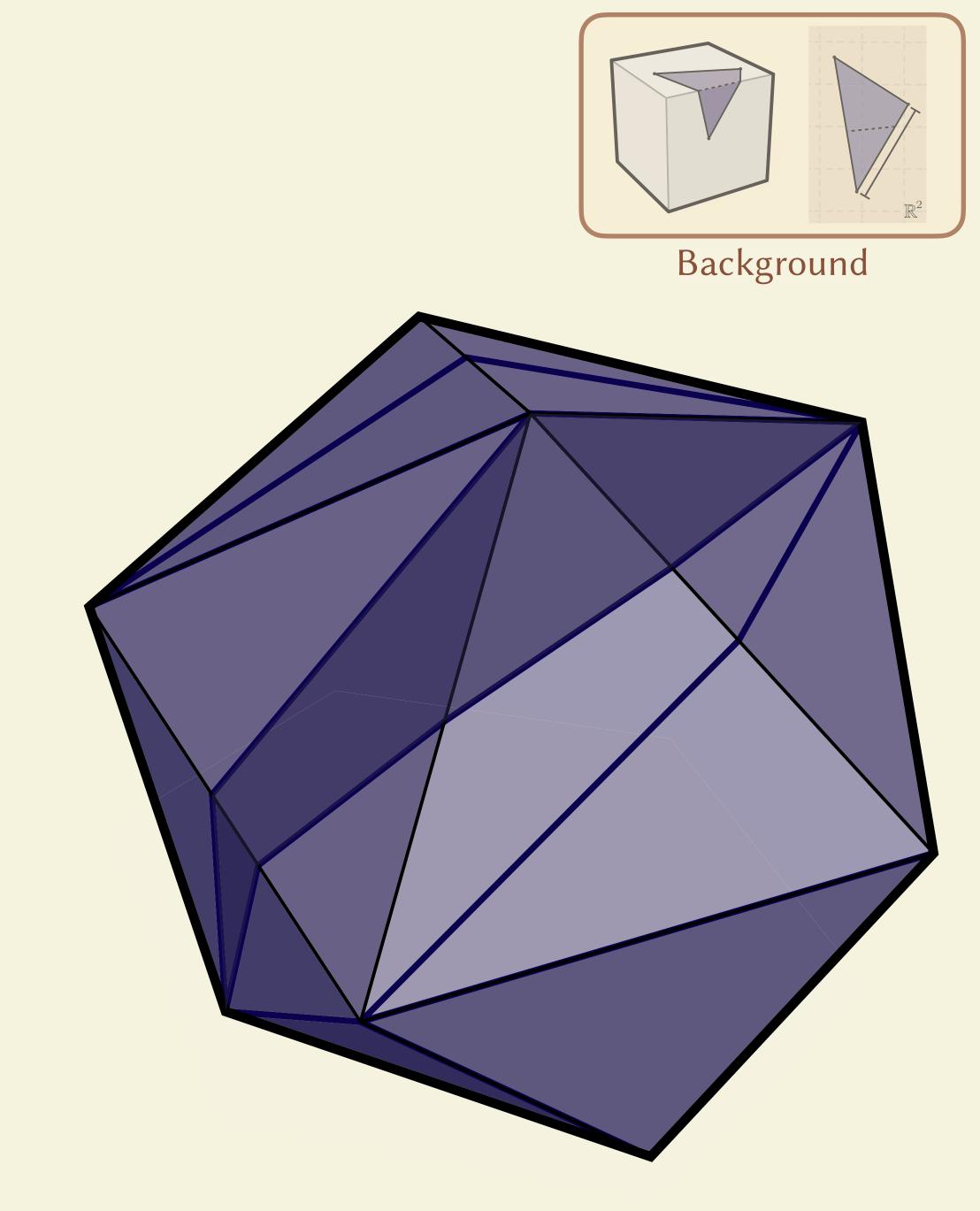
I'll refer to both as "triangle meshes"



Correspondence

A correspondence between two triangulations is a function mapping one onto the other

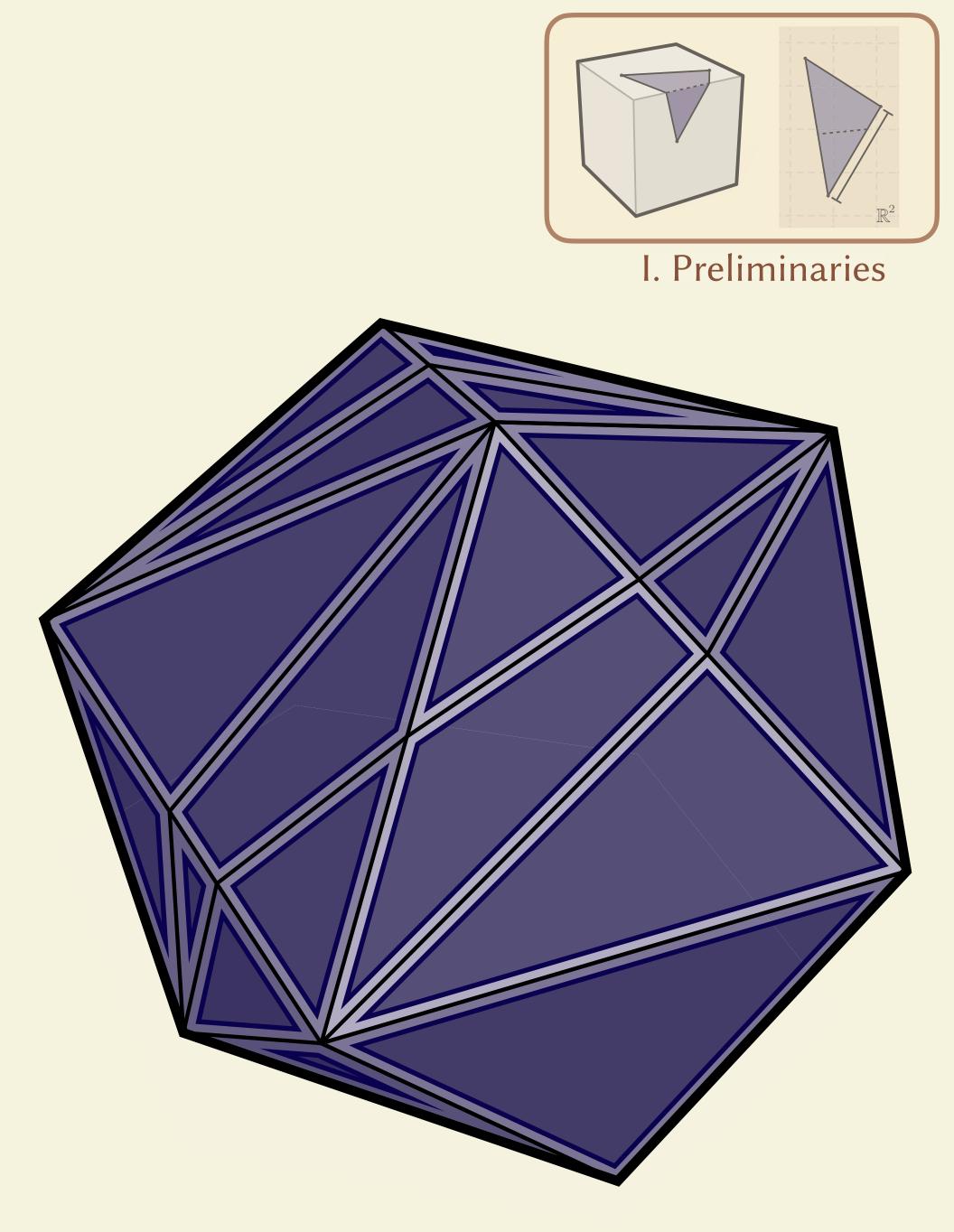
- Traditional case: intrinsic triangulation sitting on top of an extrinsic triangulation
 - Exact same geometry



Common subdivision

The common subdivision of two triangulations is the result of cutting one triangulation along the edges of the other

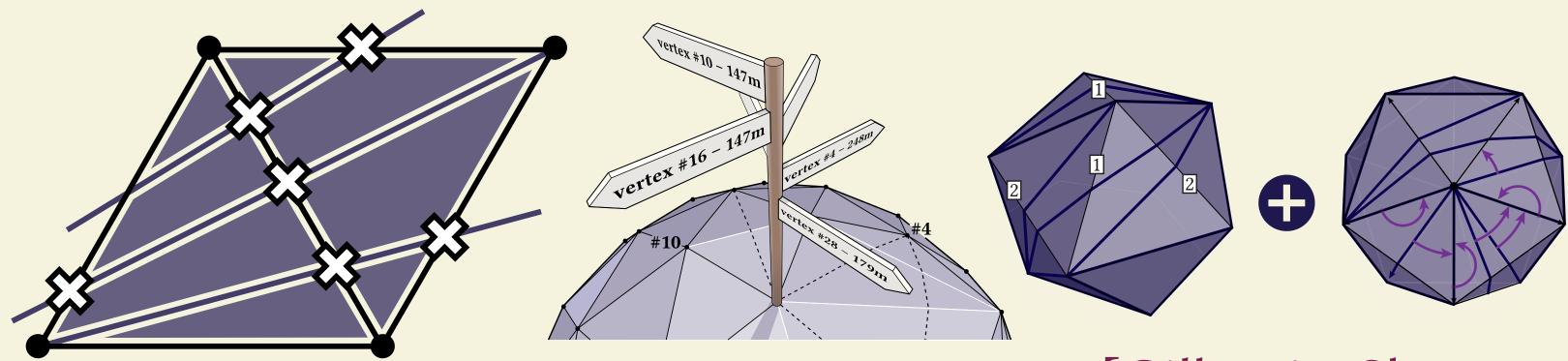
Contains both triangulations



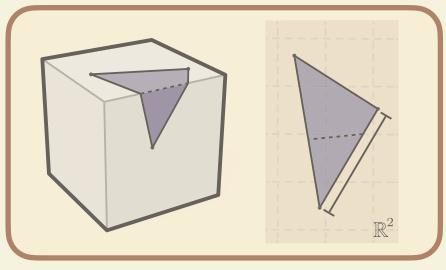
The challenge of evolving intrinsic triangulations

 Tracking correspondence between meshes with different geometry

CORRESPONDENCE WITH SAME GEOMETRY



[Sharp, Soliman & [Fisher, Springborn, Crane 2019] Bobenko & Schröder 2006]



Background

CORRESPONDENCE WITH DIFFERENT GEOMETRY

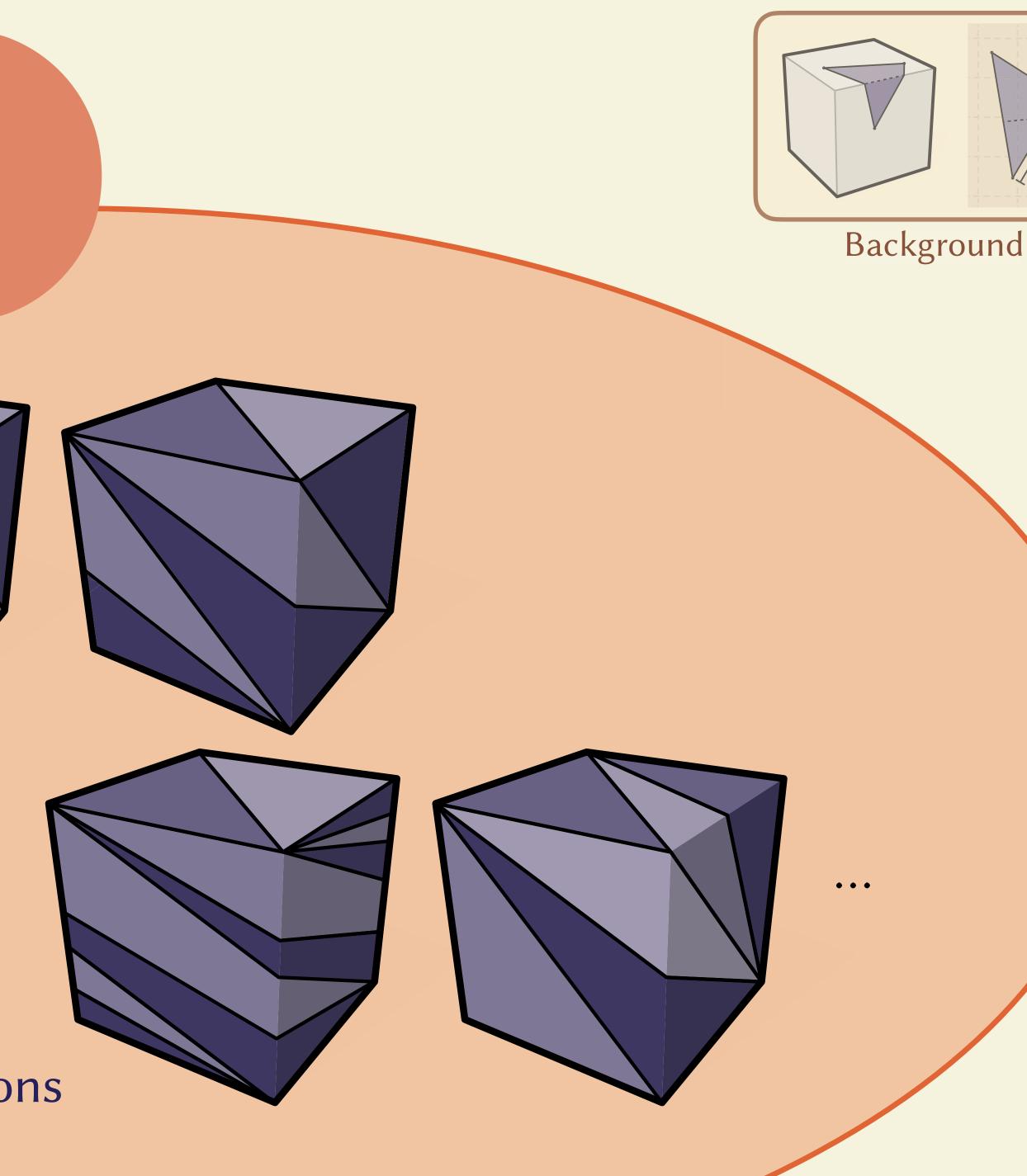
[Gillespie, Sharp] & Crane 2021]

28

The space of intrinsic triangulations is large

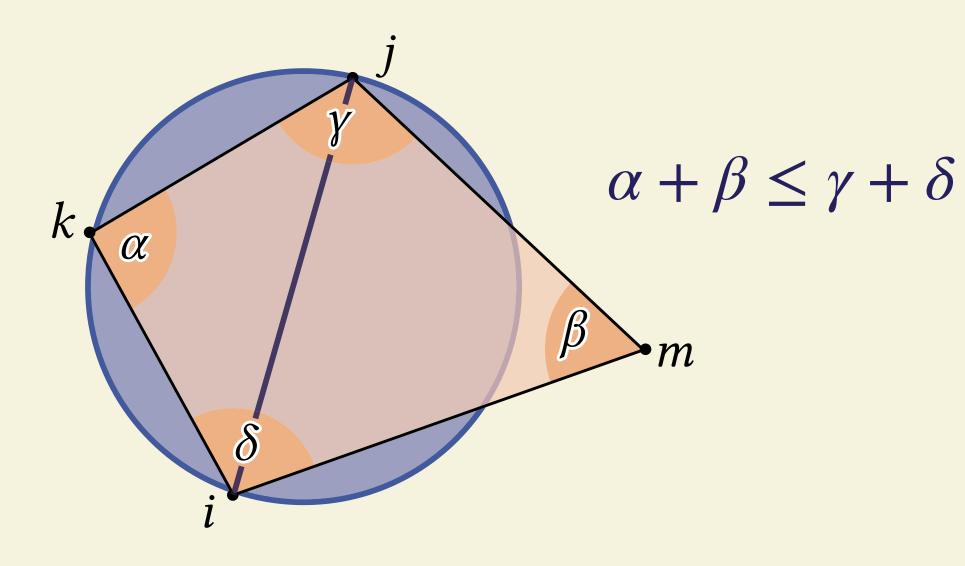
extrinsic triangulations

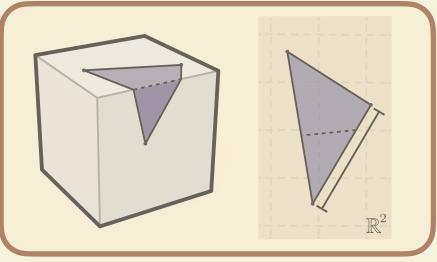
intrinsic triangulations



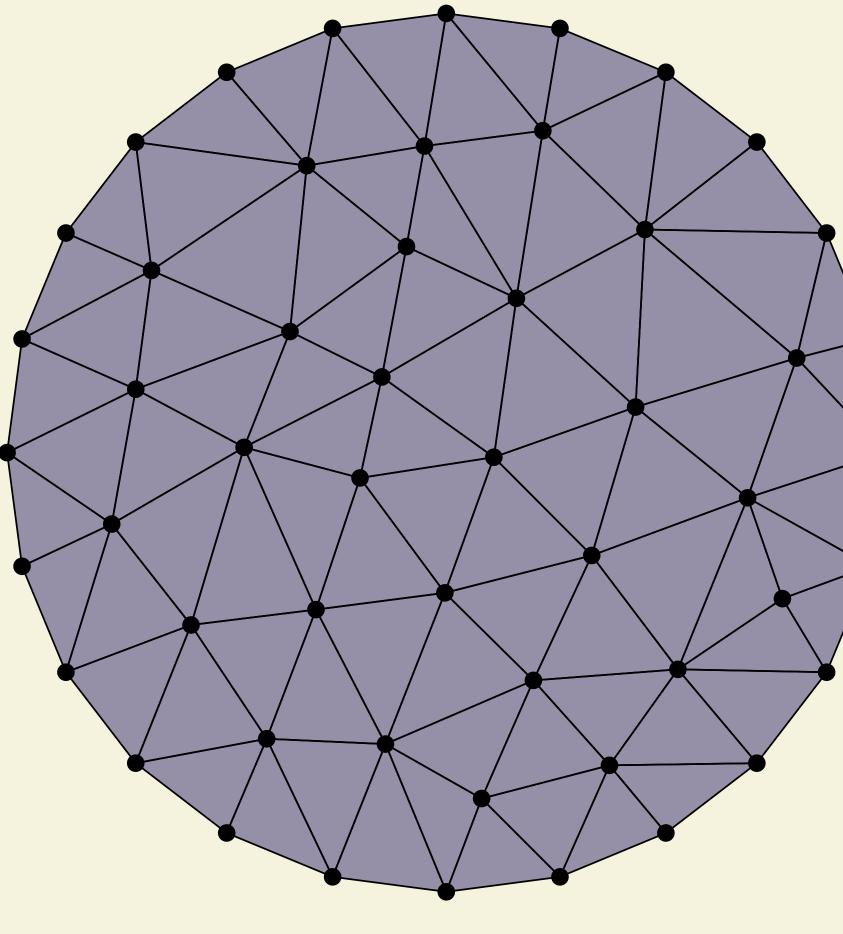
Delaunay triangulations

- Countless useful properties:
 - Essentially unique, maximize angles lexicographically, minimize spectrum lexicographically, smoothest interpolation, positive cotan weights...
- Characterized by empty circumcircle condition





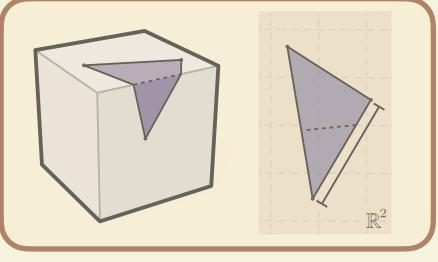
Background



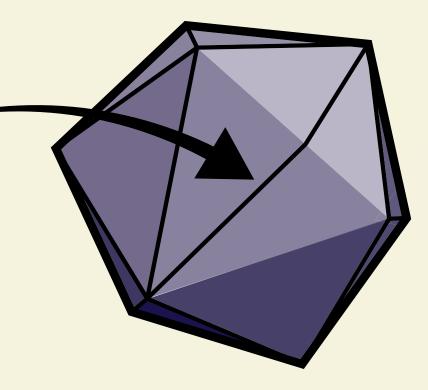
Intrinsic Delaunay triangulations

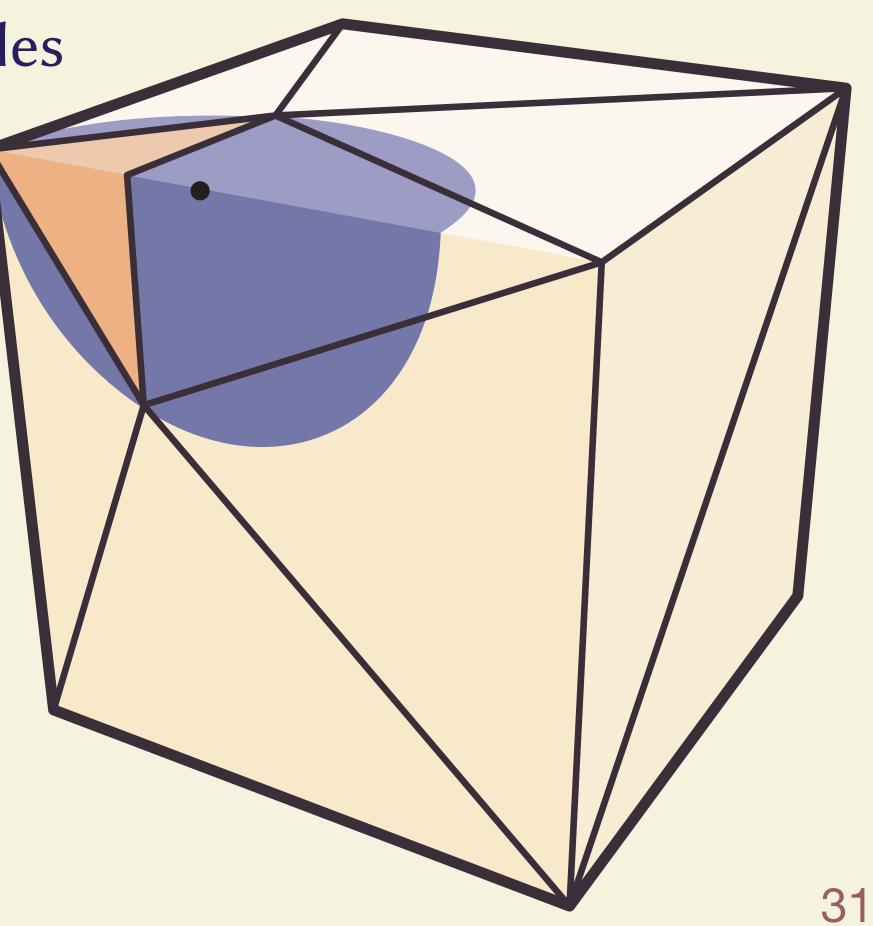
- [Indermitte, Liebling, Troyanov & Clemençon 2001, Bobenko & Springborn 2007]: empty intrinsic circumcircles
 - Maintain many nice properties. [Sharp, Gillespie & Crane 2021; §4.1.1]
- Compute by a simple algorithm:
 - Flip any non-Delaunay edge until none remain



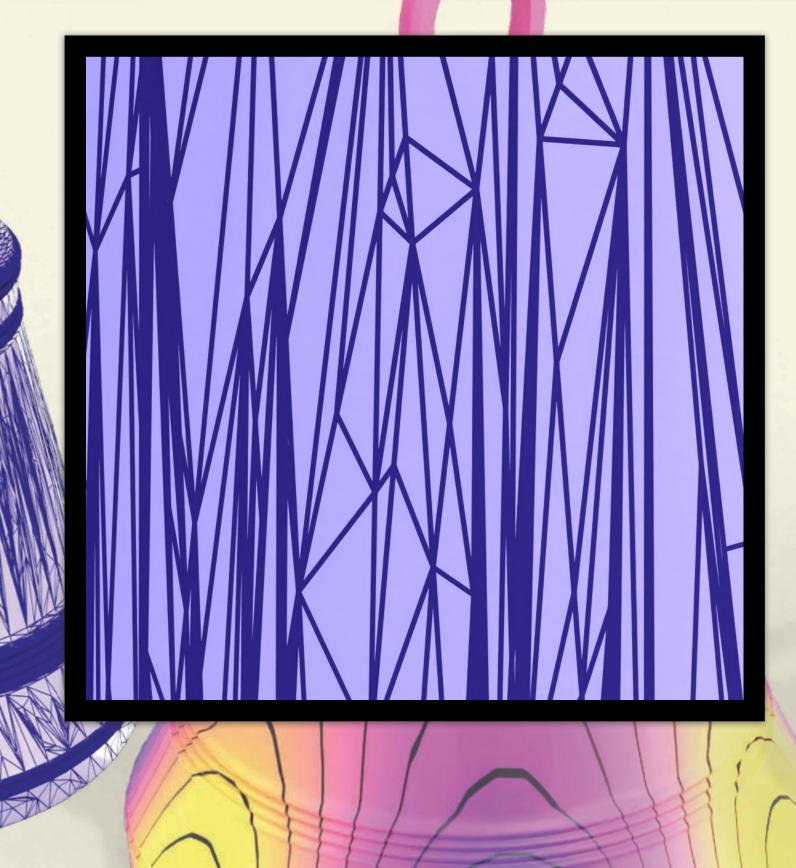


Background



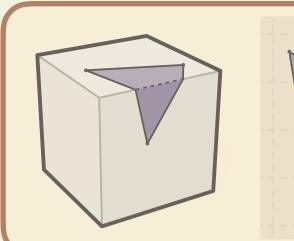


Intrinsic Delaunay triangulations provide good function spaces



original mesh

AN MARKEN





intrinsic Delaunay triangulation 32

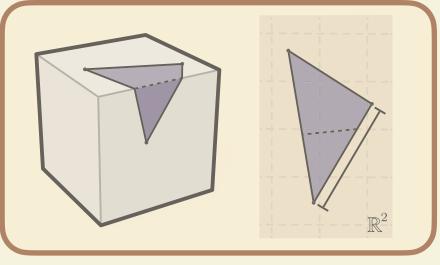
Intrinsic Delaunay refinement

[Sharp, Soliman & Crane 2019]

Add vertices intrinsically to improve quality

Theorem [G., Sharp & Crane 2021]

Let *M* be a mesh without boundary whose cone angles are all at least 60°. Then intrinsic Delaunay refinement produces a Delaunay mesh with triangle corner angles at least 30°



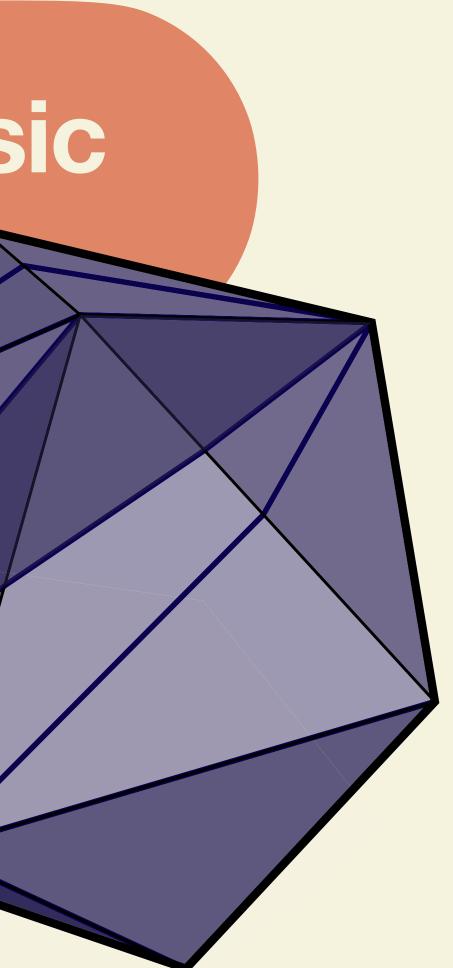
Background

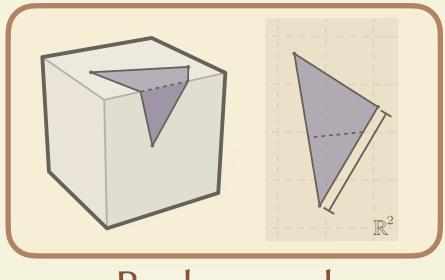
60°

A brief history of intrinsic triangulations

Foundations: [Alexandrov 1948; Regge 1961]

Geometry Processing: [Fisher, Springborn, Bobenko & Schröder 2006; Bobenko & Springborn 2007, Bobenko & Izmestiev 2008; Sun, Wu, Gu & Luo 2015; Sharp, Soliman & Crane 2019; Fumero, Möller & Rodolà 2020; Gillespie, Springborn & Crane 2021; Finnendahl, Schwartz & Alexa 2023]





Background

I. Data Structures for Intrinsic Triangulations

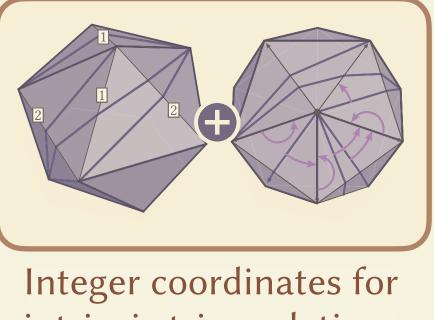
Gillespie, Sharp, & Crane. 2021. Integer coordinates for intrinsic geometry processing. *ACM Transactions on Graphics*

Correspondence data structures

Overlay Mesh

[Fisher, Springborn, Bobenko & Schröder 2006]

- Explicit mesh of common subdivision
- Edge flips nonlocal & expensive
 - No further operations



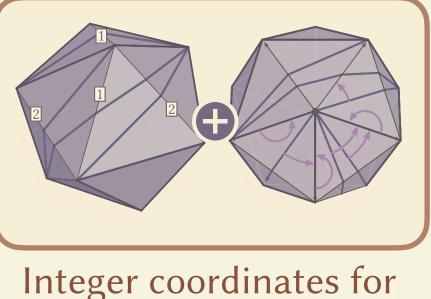
intrinsic triangulations

Correspondence data structures

Overlay Mesh

[Fisher, Springb & Schröc

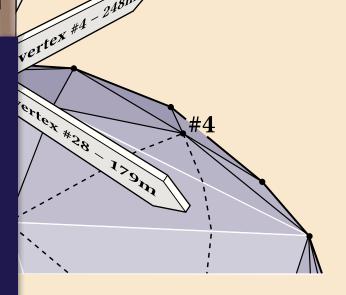
- Explicit mesh of common subdivision
- Edge flips nonlocal & expensive
 - No further operations



intrinsic triangulations

Signposts

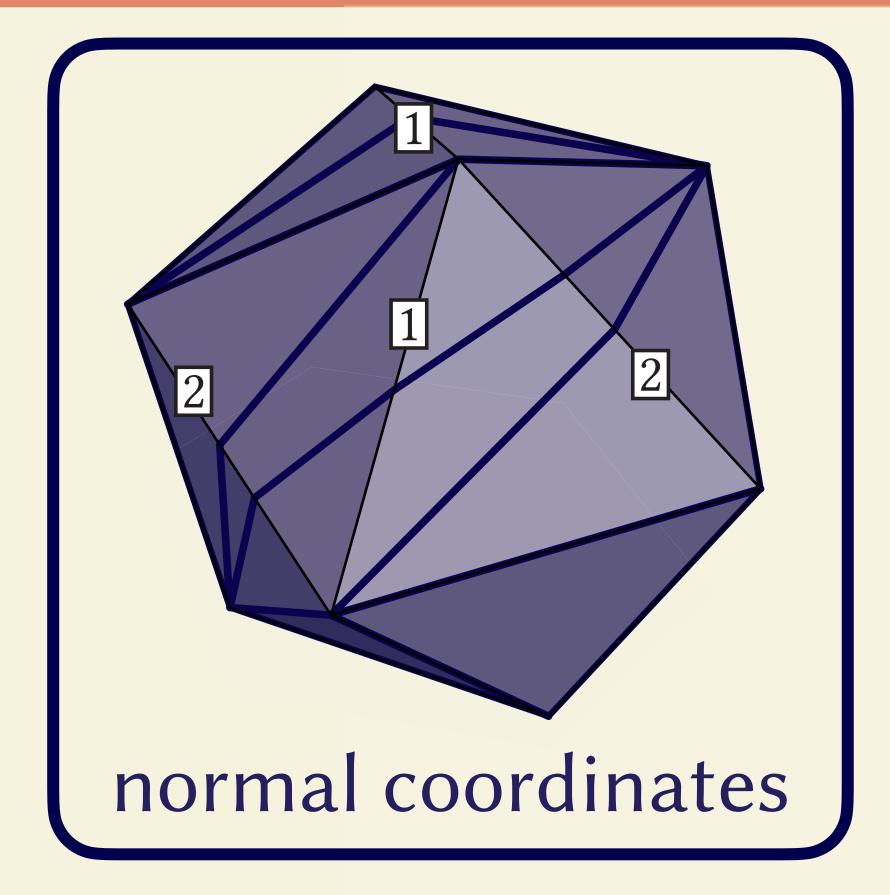
Integer coordinates combine the best of both worlds

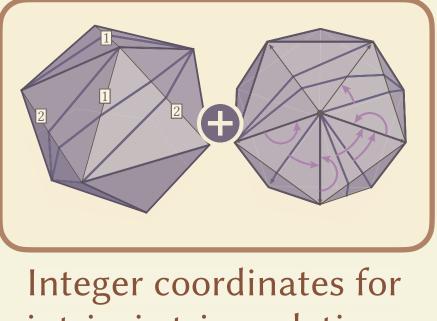


& Crane 2019]

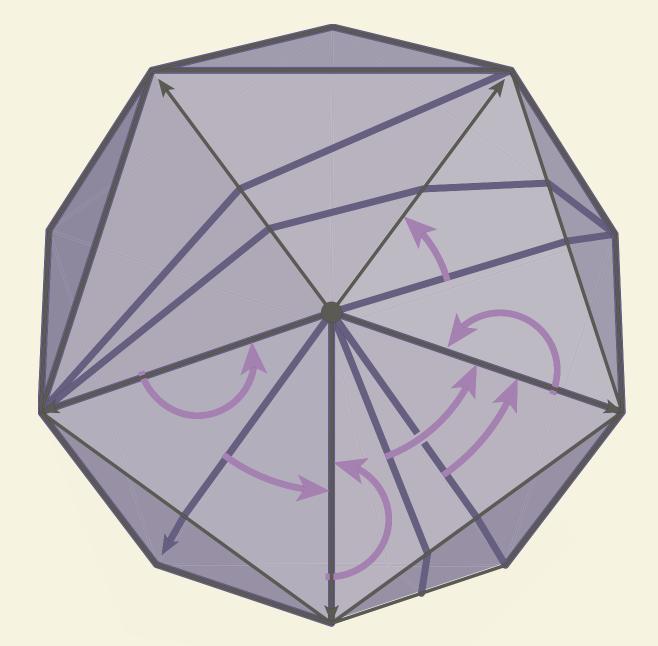
- Floating point quantities stored at vertices
- Supports many local mesh operations
- Common subdivision connectivity may be invalid

The integer coordinates data structure





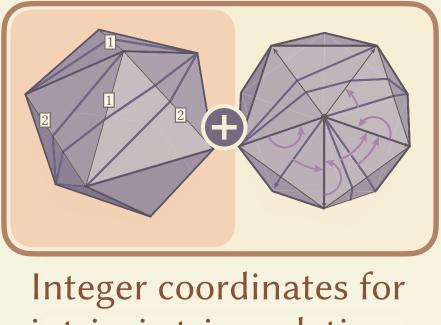
intrinsic triangulations



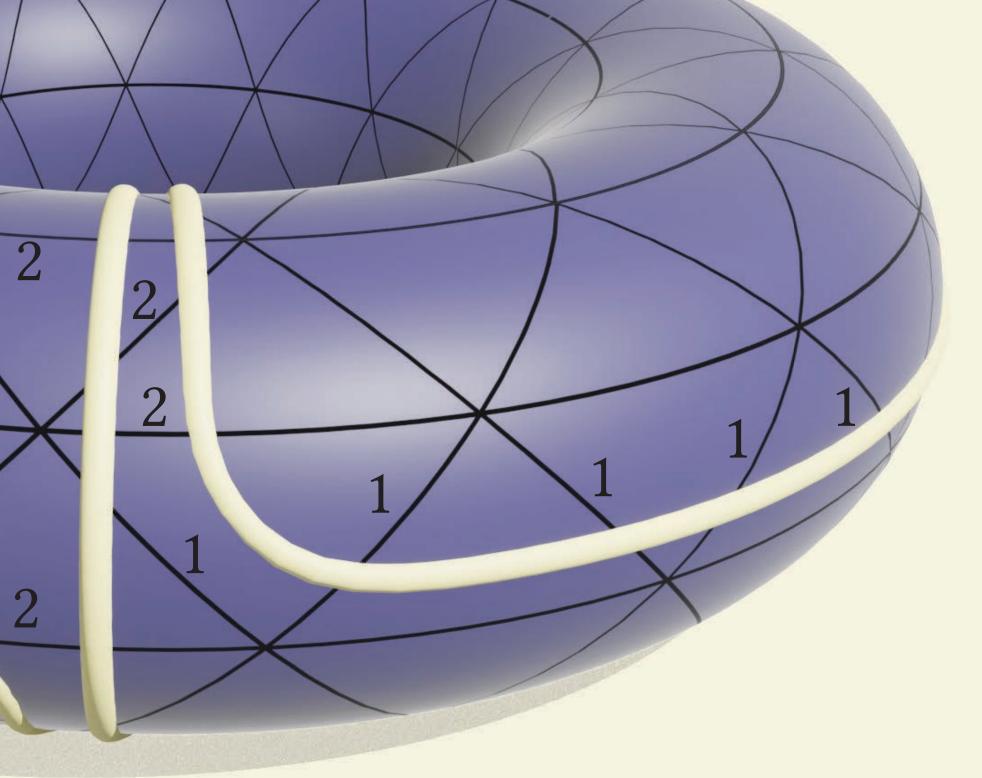
(concretely, just 3 integers per edge)

Normal coordinates

Geometry Processing: [Hass & Trnkova 2020]



intrinsic triangulations



- Foundations: [Kneser 1929; Haken 1961]
- **Computational Topology:** [Schaefer+ 2008; Erickson & Nayyeri 2013]

Encoding a curve with normal coordinates

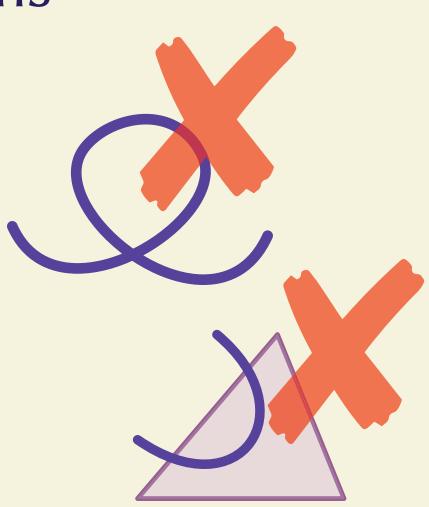
• Just count intersections

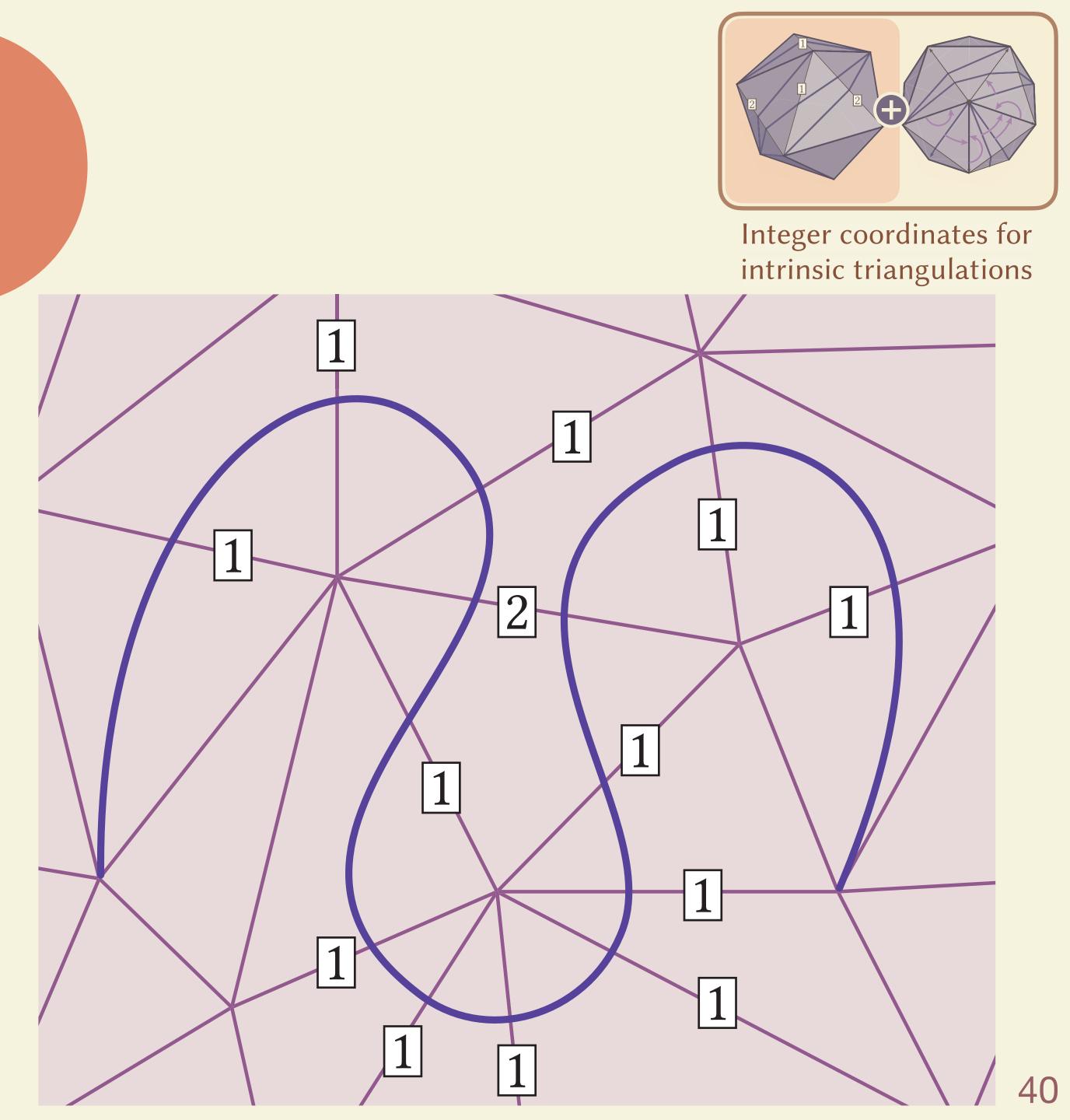
Rules

- 1. No self-crossings
- 2. No U-turns

(also curves may only start or end at vertices of the triangulation)

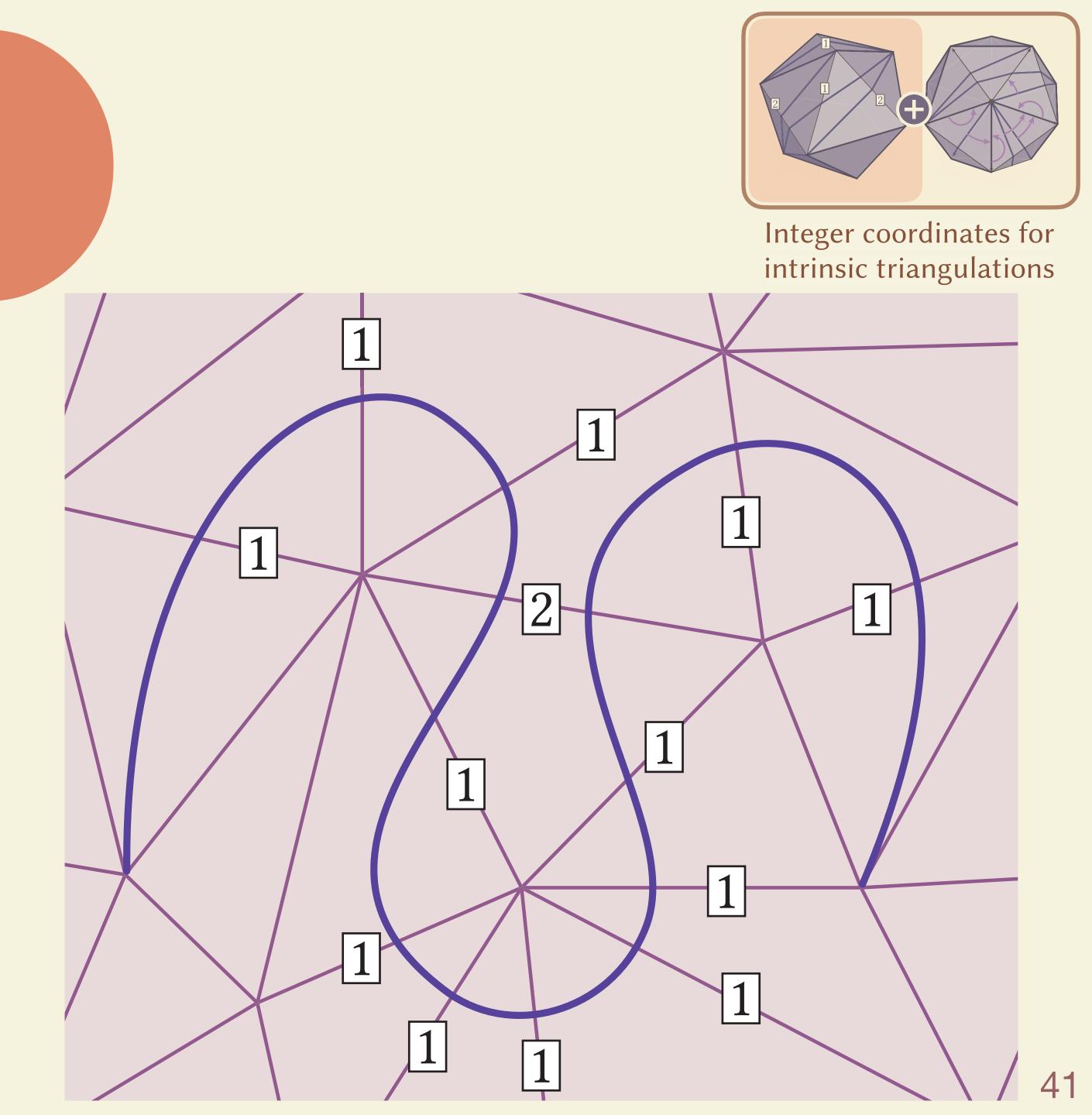
automatically satisfied for our triangulations



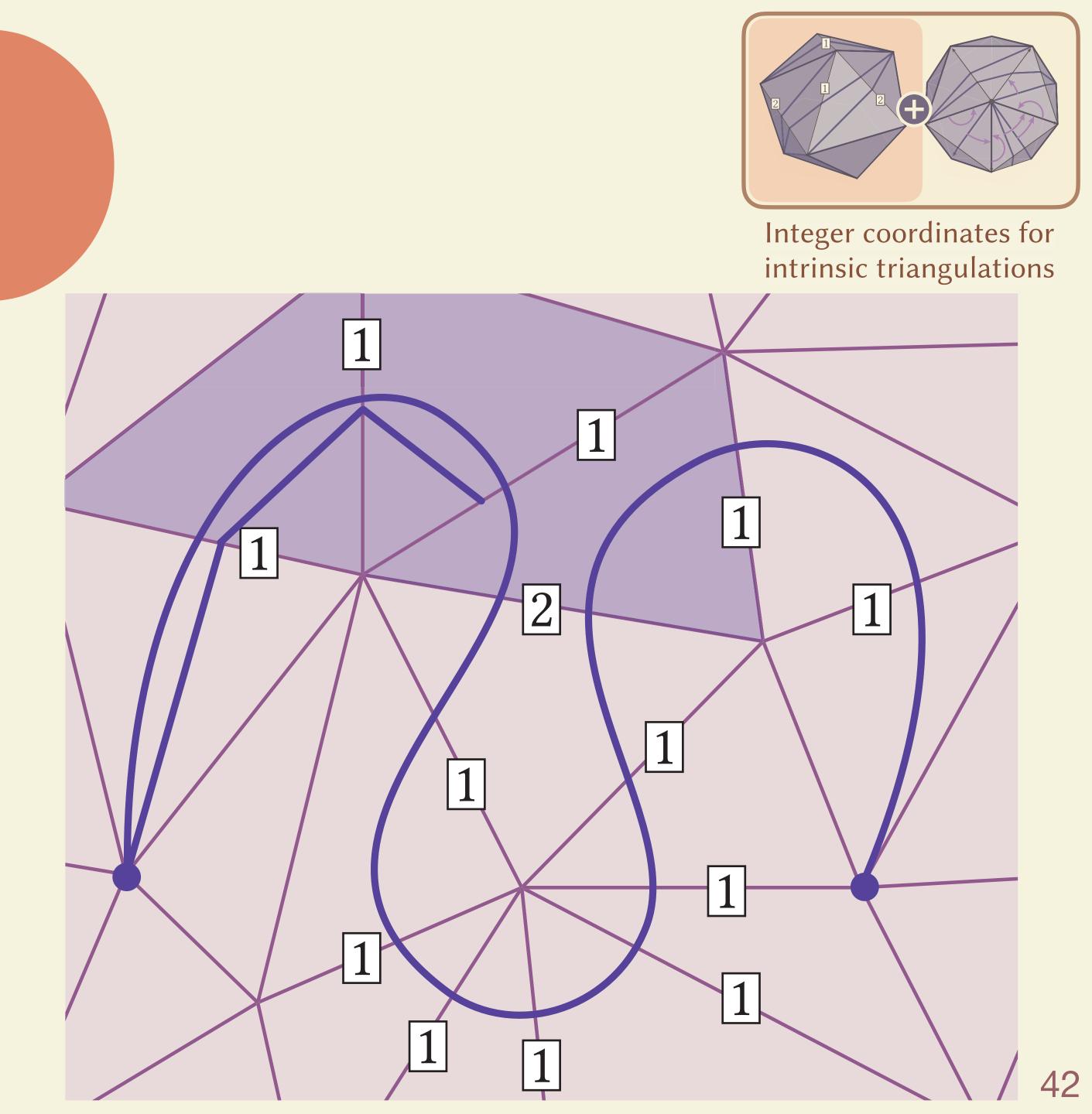


How much do normal coordinates tell us?

• Encodes sequence of triangles

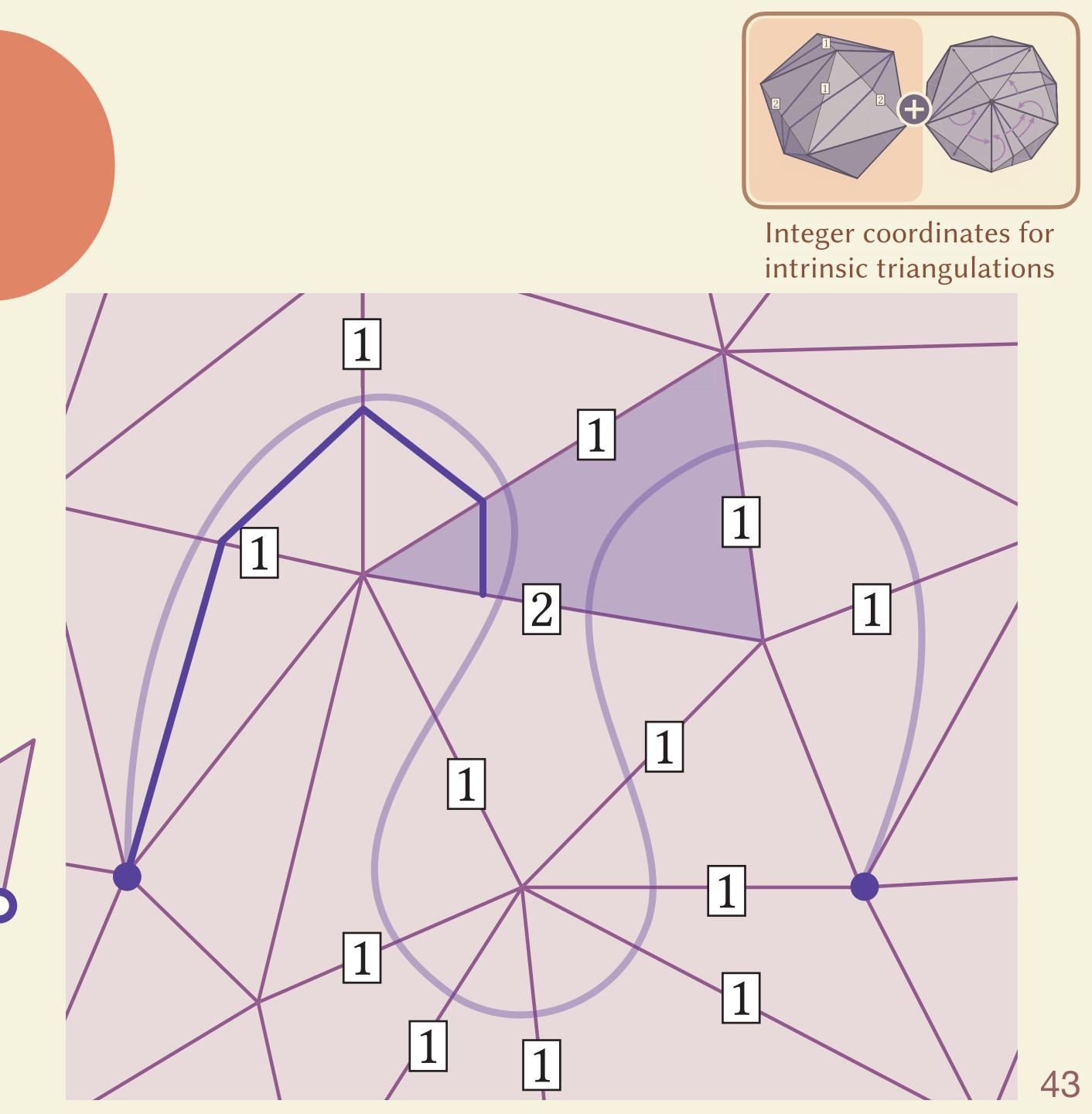


Reconstructing the Curve

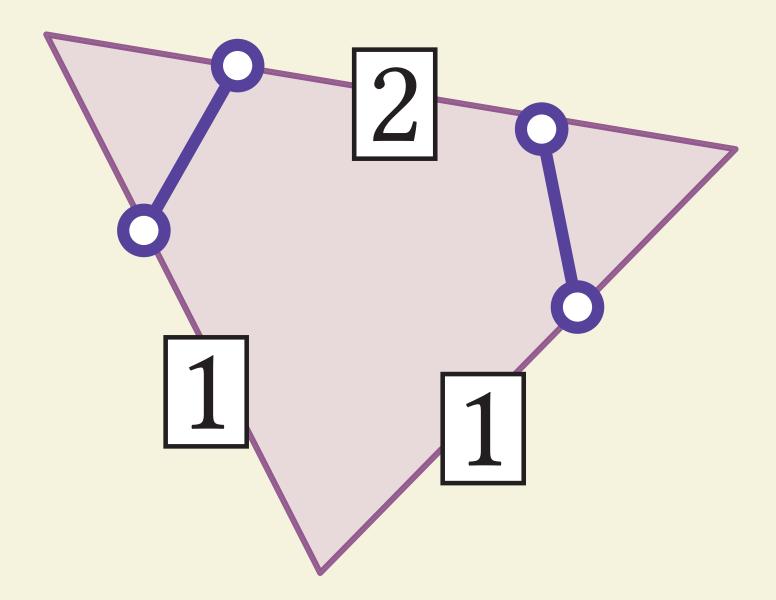


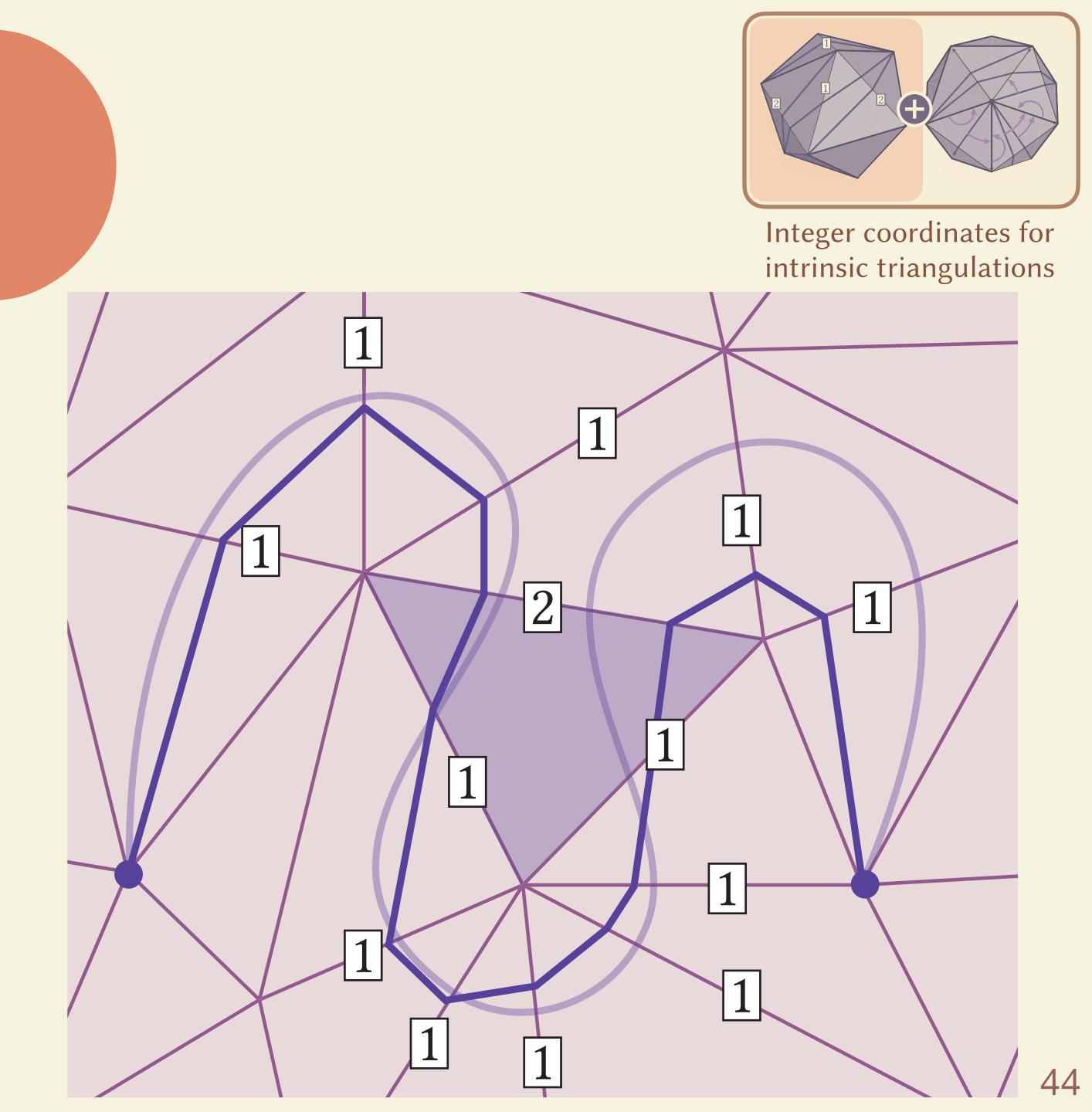
Reconstructing the Curve

- 1. No self-crossings
- 2. No U-turns



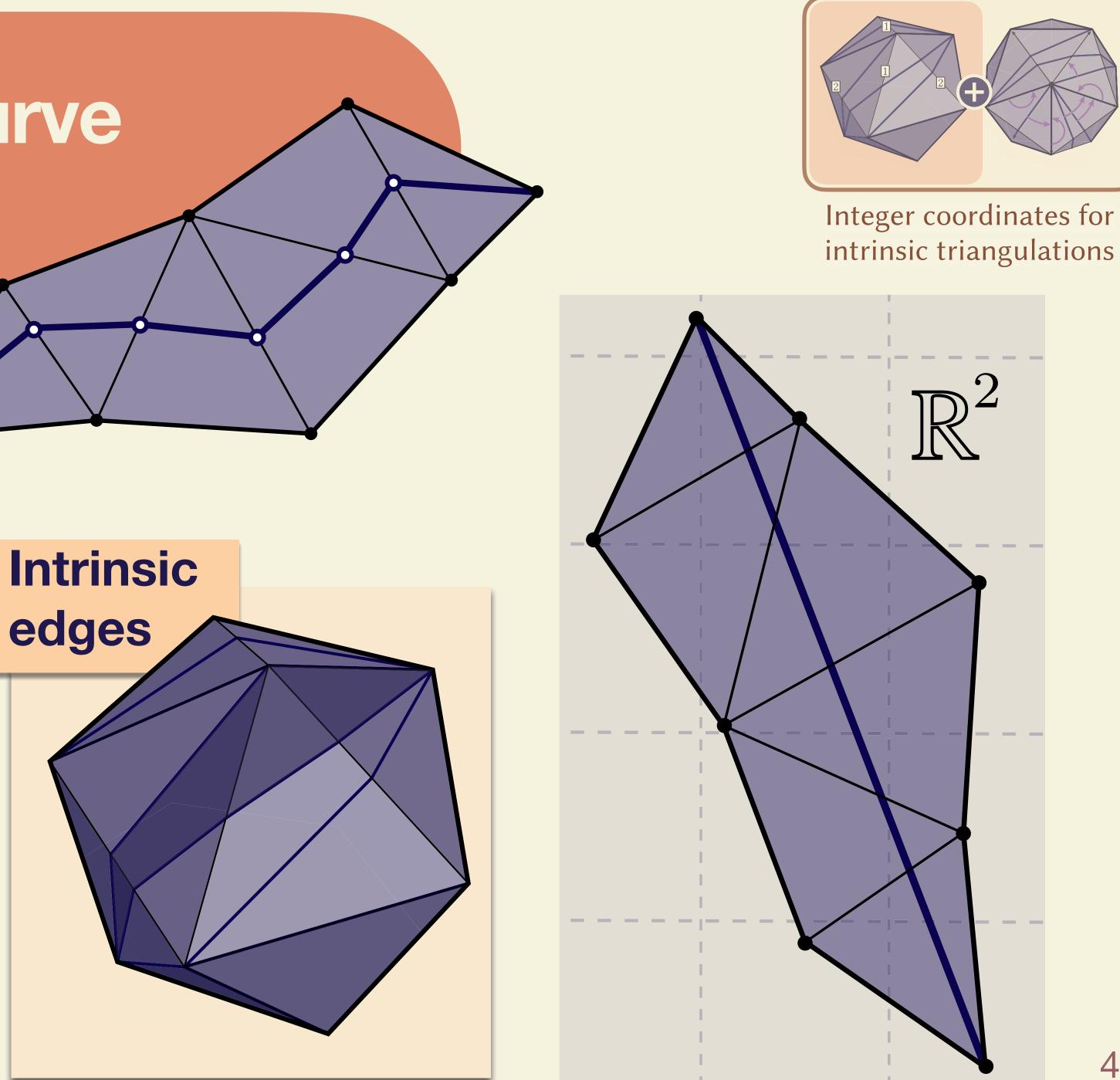
Reconstructing the curve





Finding the exact curve geometry

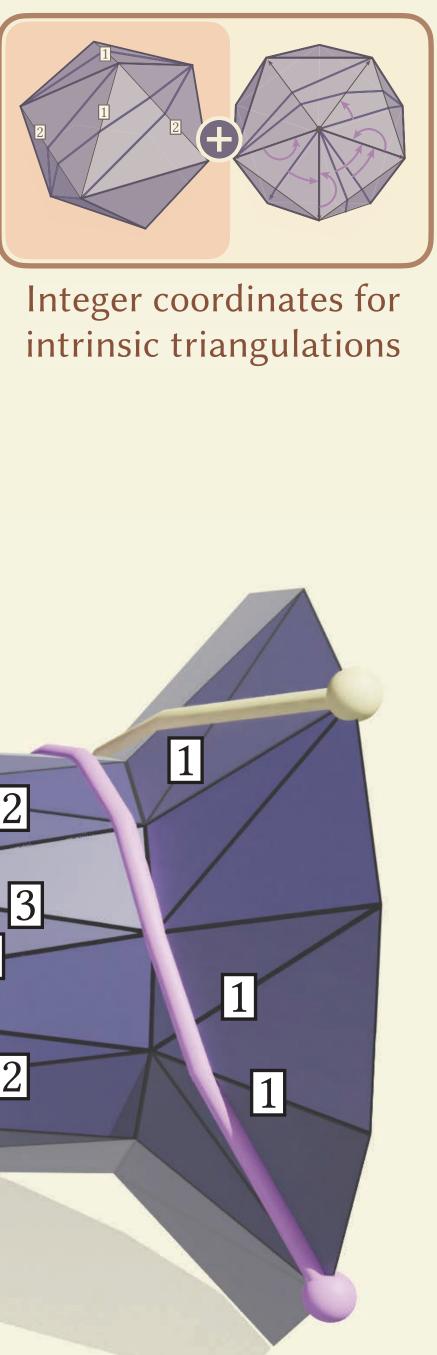
- So far: sequence of triangles
- True curve is a straightest path
 - Lay out in plane to find exact curve
- Normal coordinates determine edges exactly

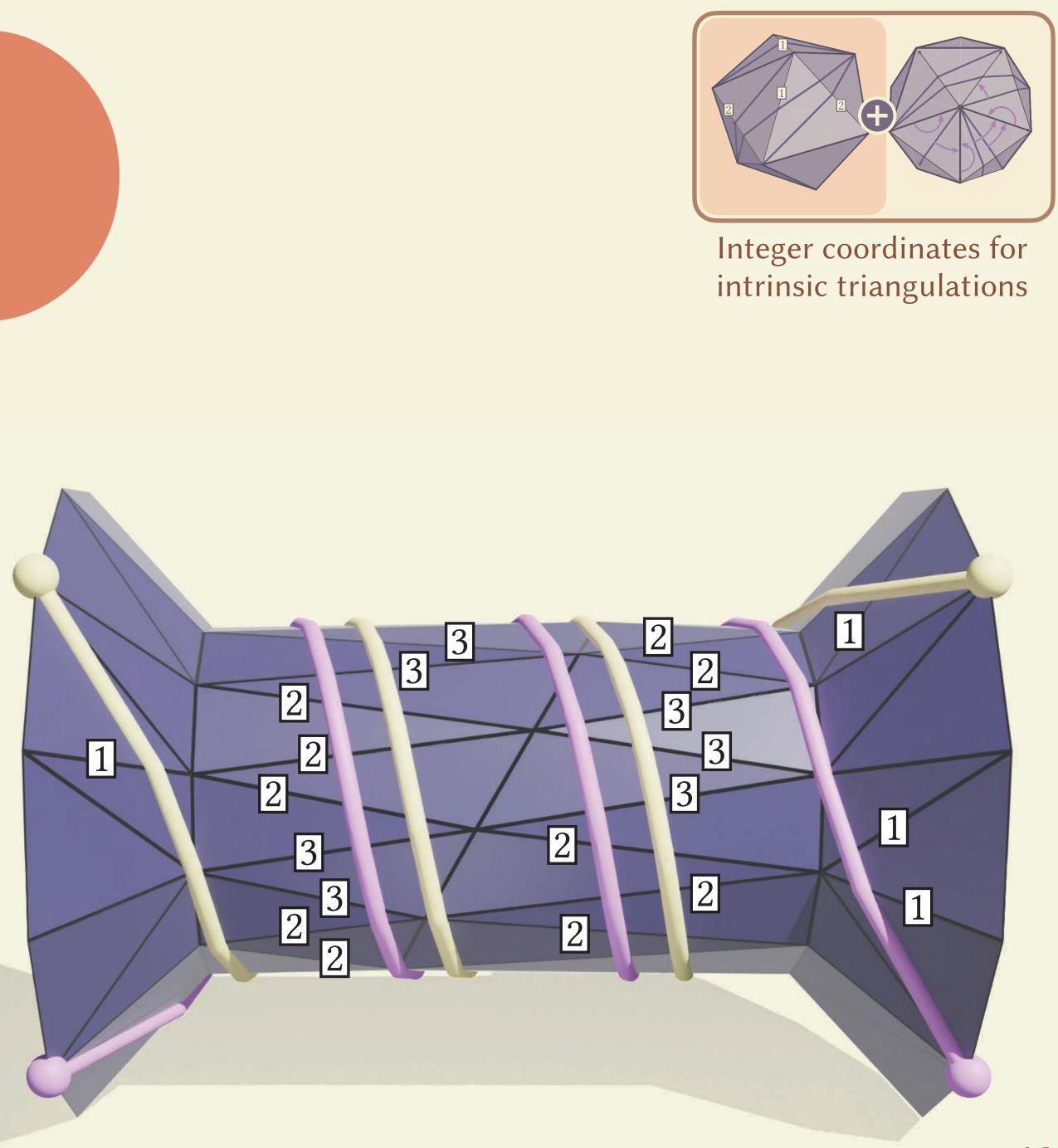


Collections of Curves

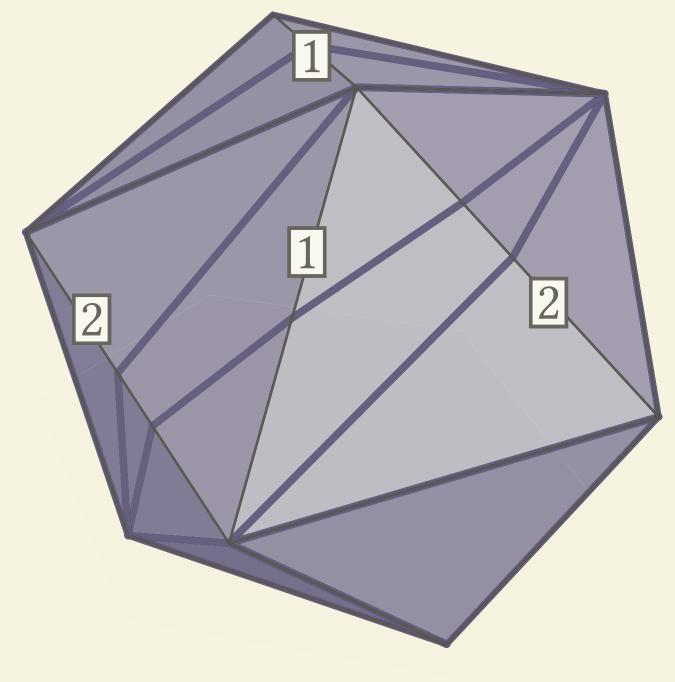
- *e.g.* edges of a triangulation
- Could store multiple sets of normal coordinates
 - Expensive
- Instead, just store one set of normal coordinates

Store just one integer per edge

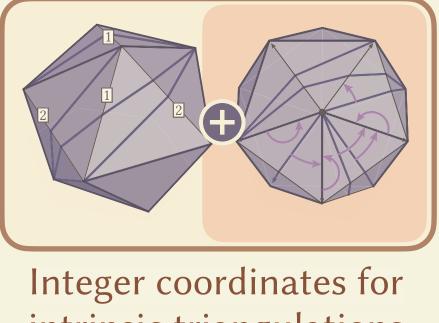




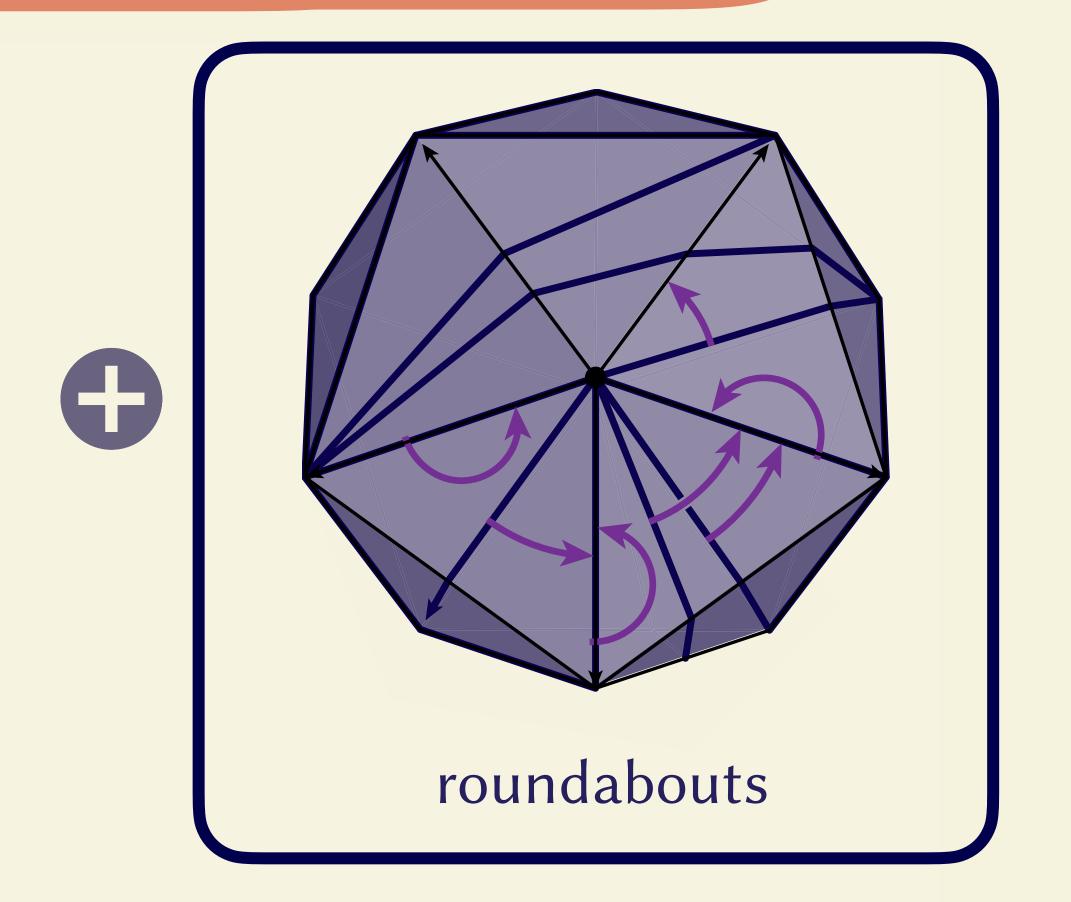
The integer coordinates data structure



normal coordinates

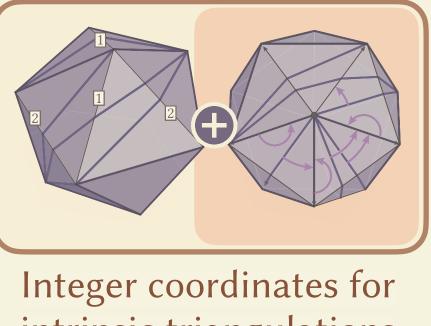


intrinsic triangulations



Normal coordinates are not enough to encode correspondence

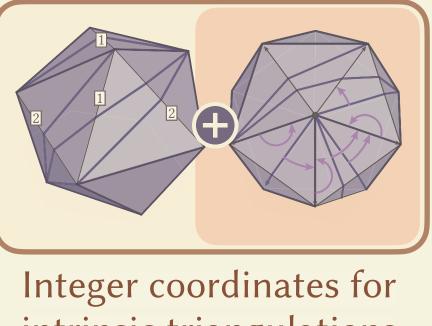
• Can't immediately tell which edge this is



intrinsic triangulations

Normal coordinates are not enough to encode correspondence

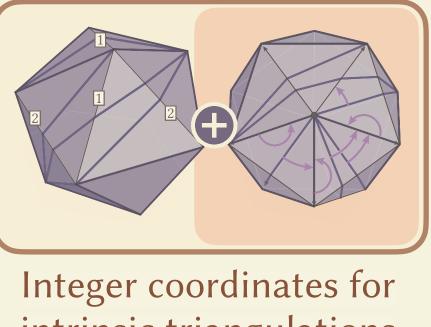
• Can't immediately tell which edge this is



intrinsic triangulations

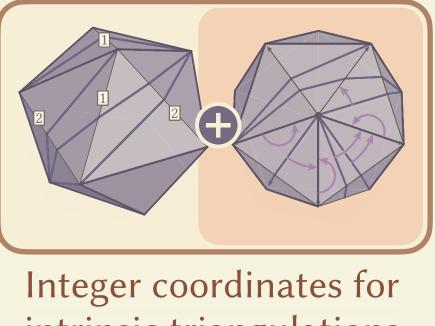
Normal coordinates are not enough to encode correspondence

- Can't immediately tell which edge this is
 - Roundabouts resolve this ambiguity



intrinsic triangulations

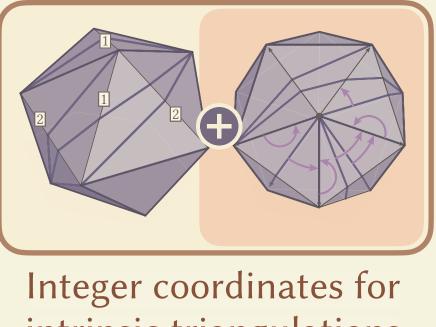
Roundabouts



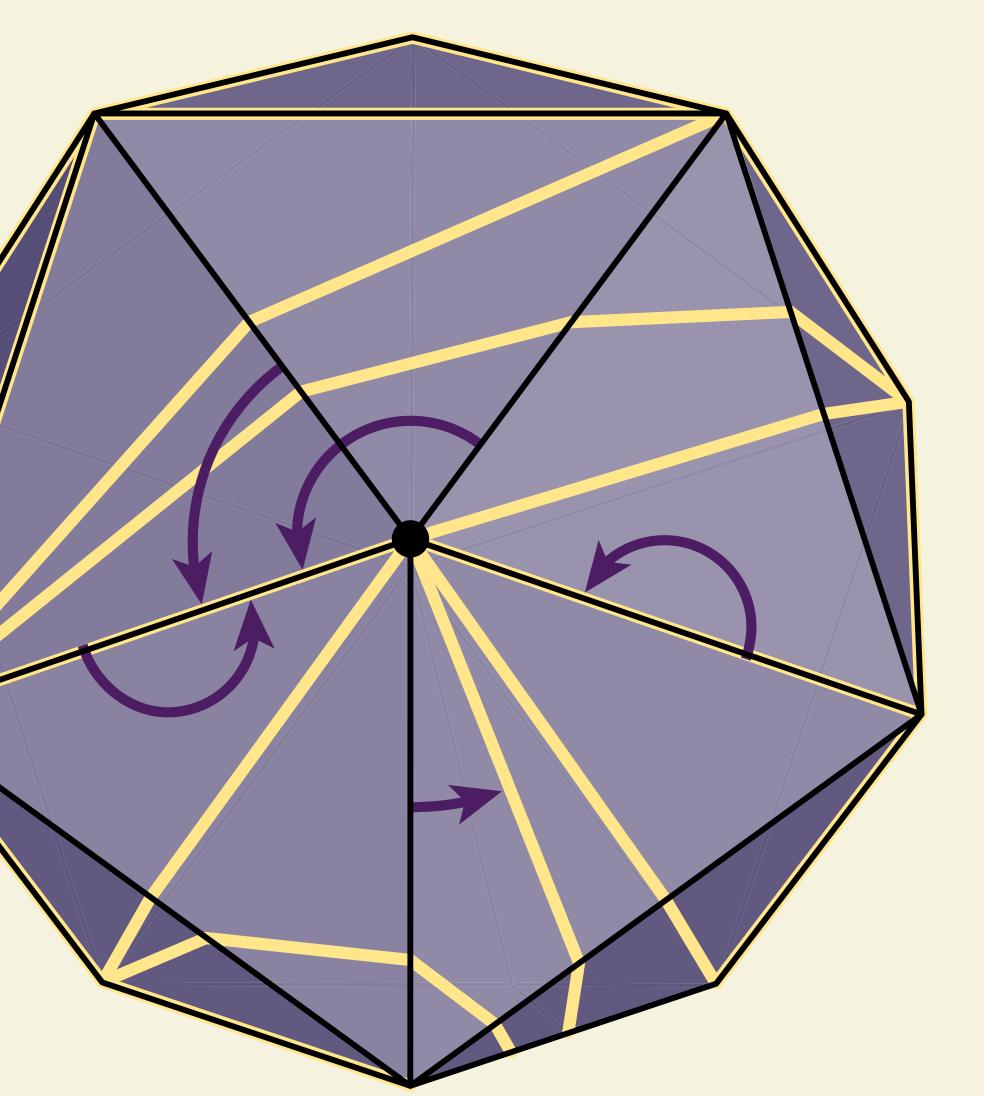
intrinsic triangulations

Roundabouts

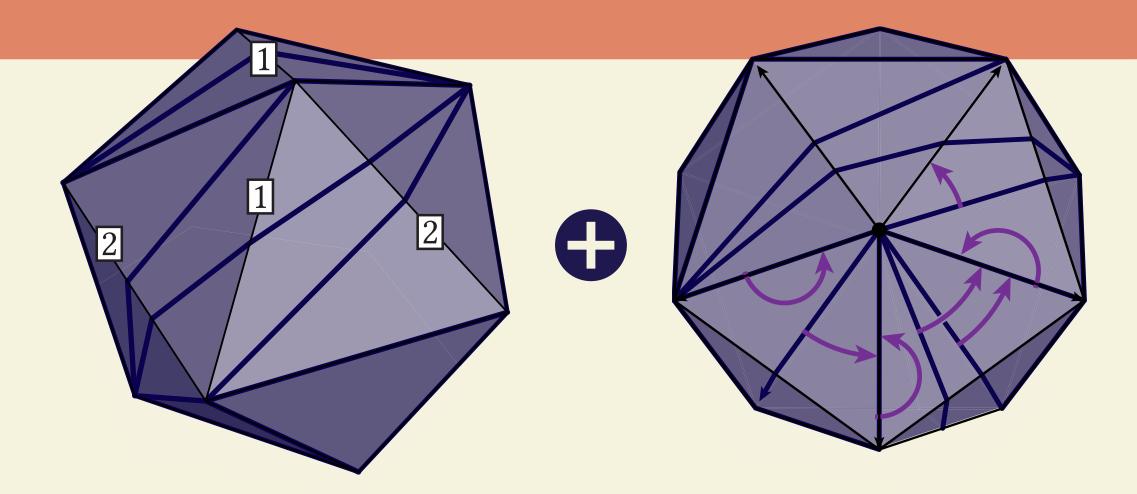
- Record how edges interleave
- Store pointer to next edge
- Resolves all ambiguity



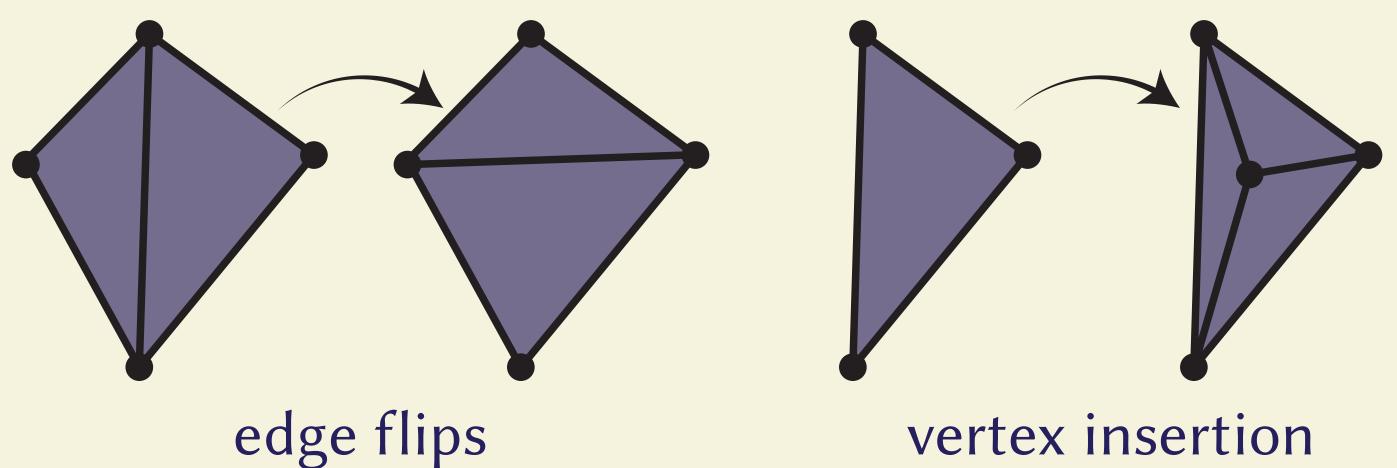
intrinsic triangulations

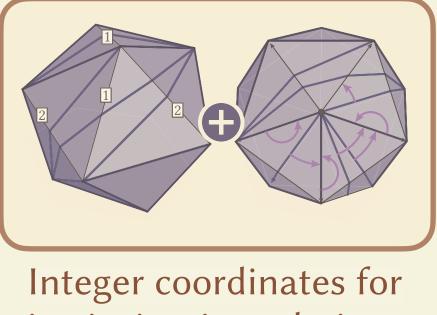


Data structure operations



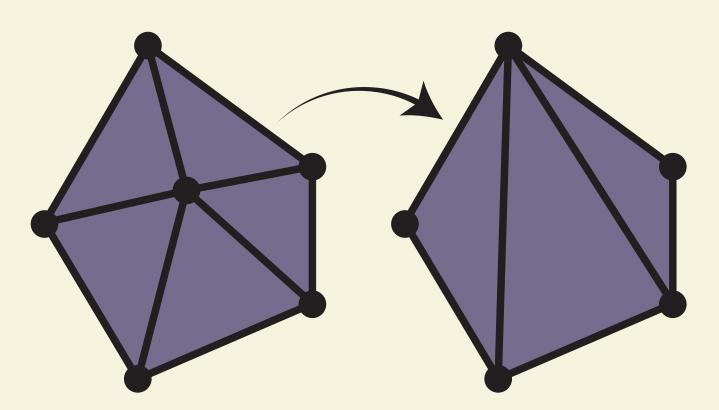
• Supports a variety of connectivity changes:





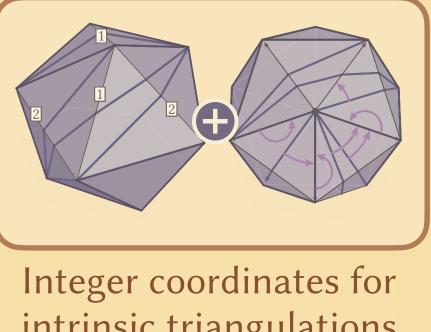
intrinsic triangulations

a complete description of correspondence



flat vertex removal

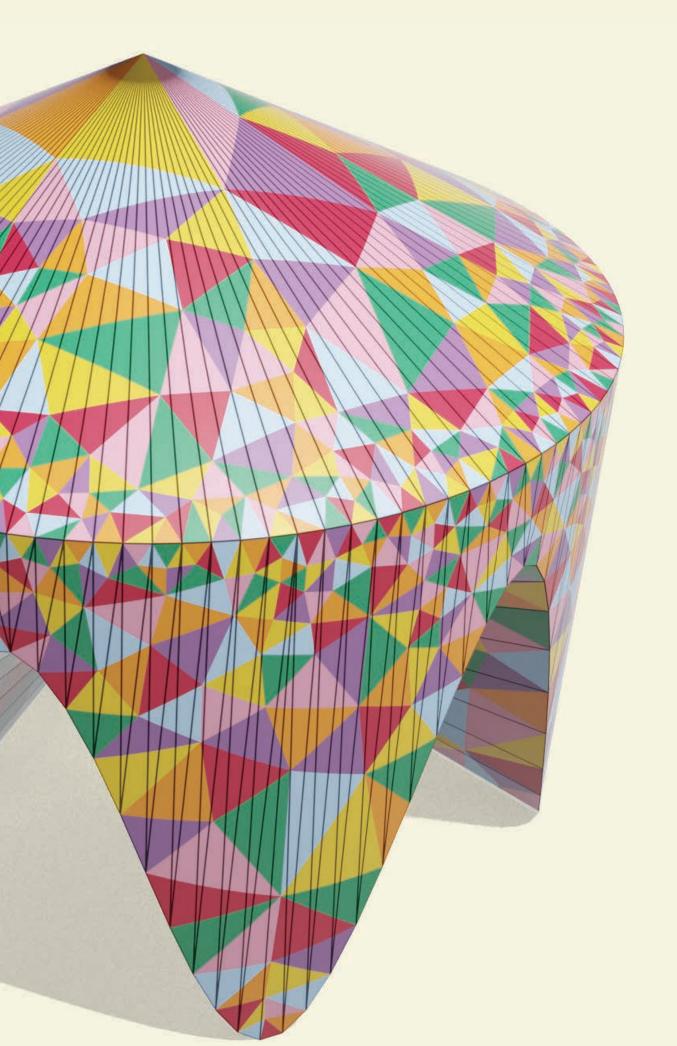
Applications

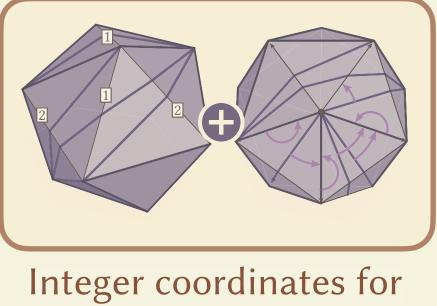


intrinsic triangulations

Intrinsic Delaunay refinement

• Recall: improve mesh quality by inserting vertices

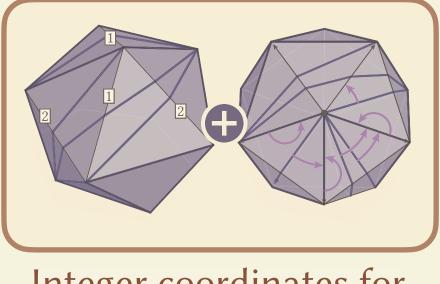




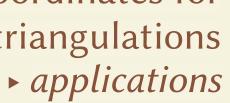
intrinsic triangulations

Common subdivisions of intrinsic Delaunay refinements

• Integer coordinates can be crucial to recovering the common subdivision

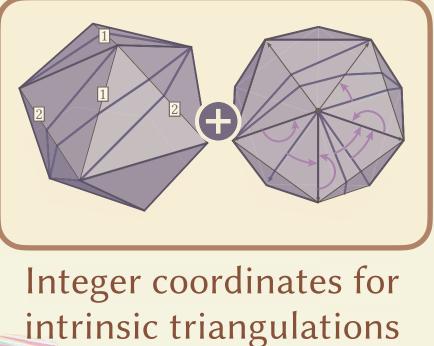


Integer coordinates for intrinsic triangulations



Intrinsic Delaunay refinement - validation

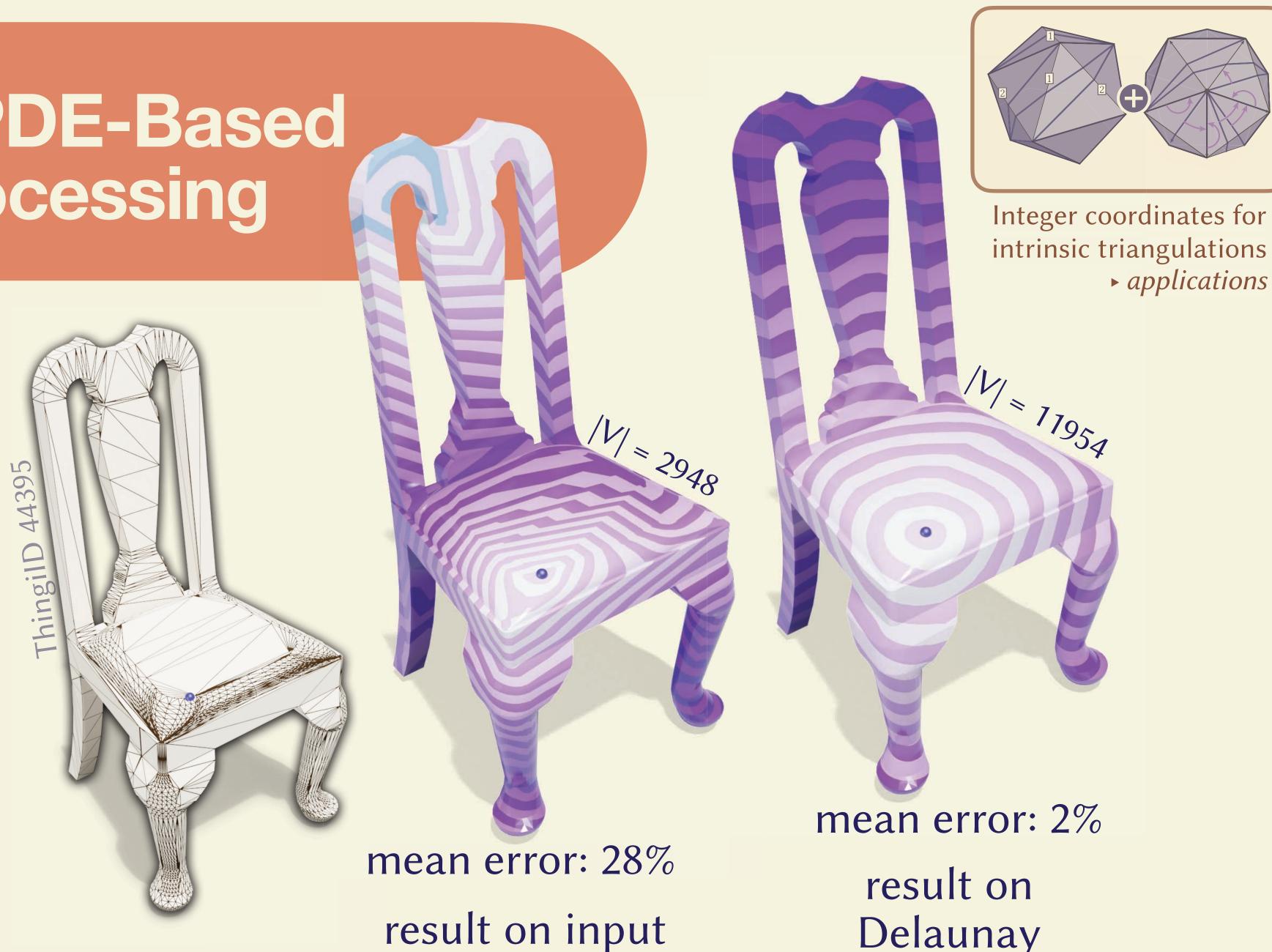
- Compute refinements & common subdivisions for Thingi10k dataset [Zhou & Jacobson 2016]
 - 7696 manifold meshes
- < 1s on most meshes; only took > 1m on 6 meshes
- 100% success rate for refinement & common subdivision
 - [Sharp, Soliman & Crane 2019] succeed on only 69.1% of meshes



► applications

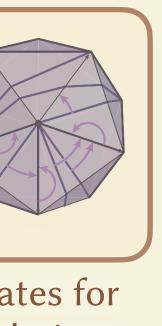
Application: PDE-Based Geometry Processing

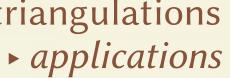
heat method for distance along surface [Crane, Weischedel & Wardetzky 2013]



mesh

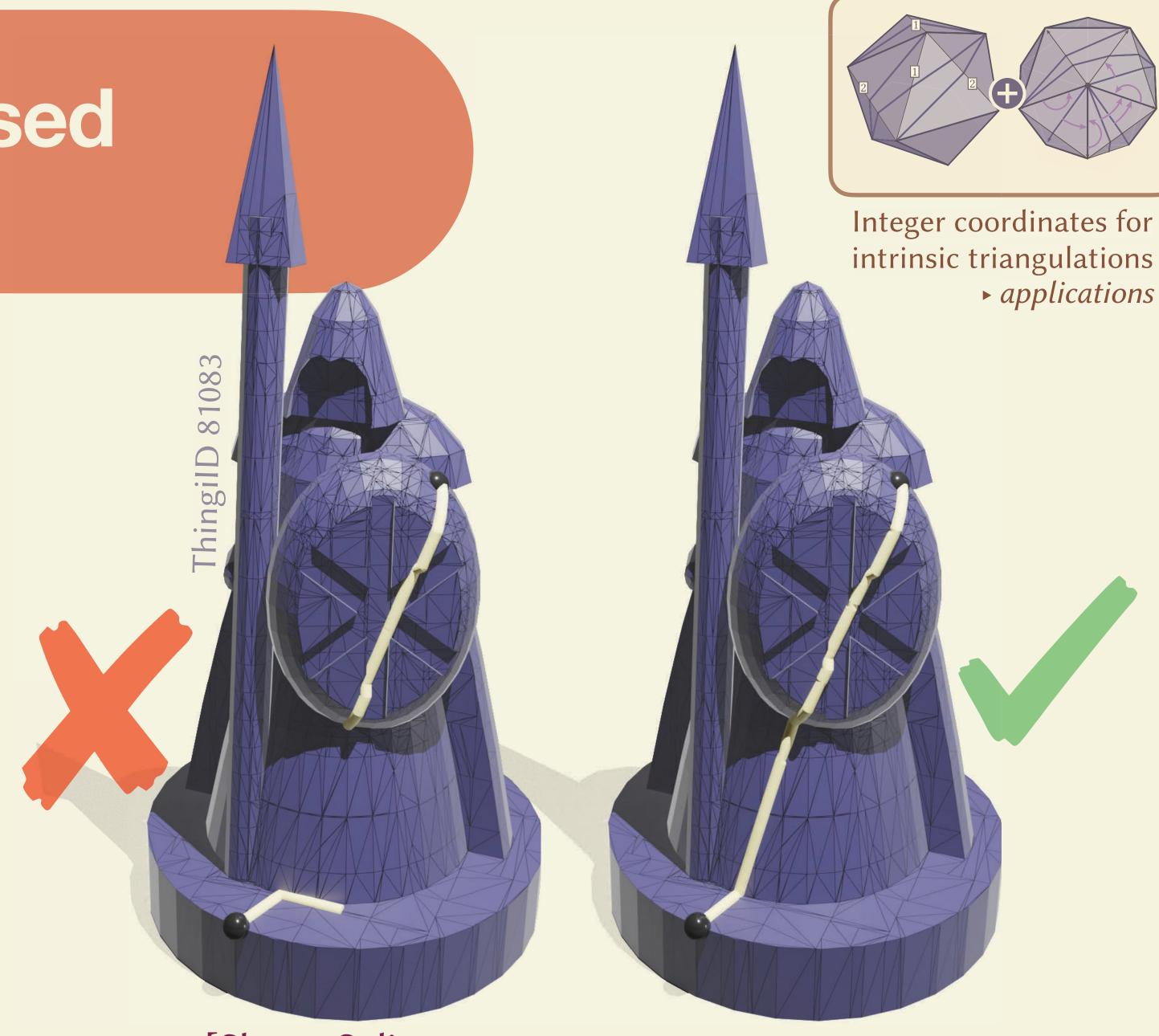
Delaunay refinement





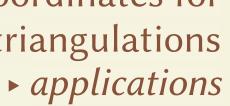
Application: Flip-Based Straightest Paths

- FlipOut [Sharp & Crane 2020]:
 - computes straightest paths via edge flips



[Sharp, Soliman & Crane 2019]

[Integer coordinates]



II. Intrinsic Simplification

Liu, Gillespie, Chislett, Sharp, Jacobson, & Crane. 2023. Surface Simplification using Intrinsic Error Metrics. ACM Transactions on Graphics

Exact geometry preservation: a blessing and a curse

Compute geometric quantities directly on the original surface

Intrinsic simplification

27,000,000 vertices

Preserves unnecessary geometric details

870,000 vertices

Coarse meshes can be perfectly adequate

S

Intrinsic simpl

► motivation

Coarse meshes can be perfectly adequate

 $\lambda_2 = 1.511$

 $\lambda_3 = 1.639$

 $\lambda_1 = 0.484$

2

Intrinsic simp ► m

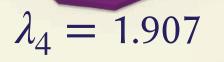
S

 $\lambda_1 = 0.491$

Near-identical, but 25x faster

 $\lambda_2 = 1.610$

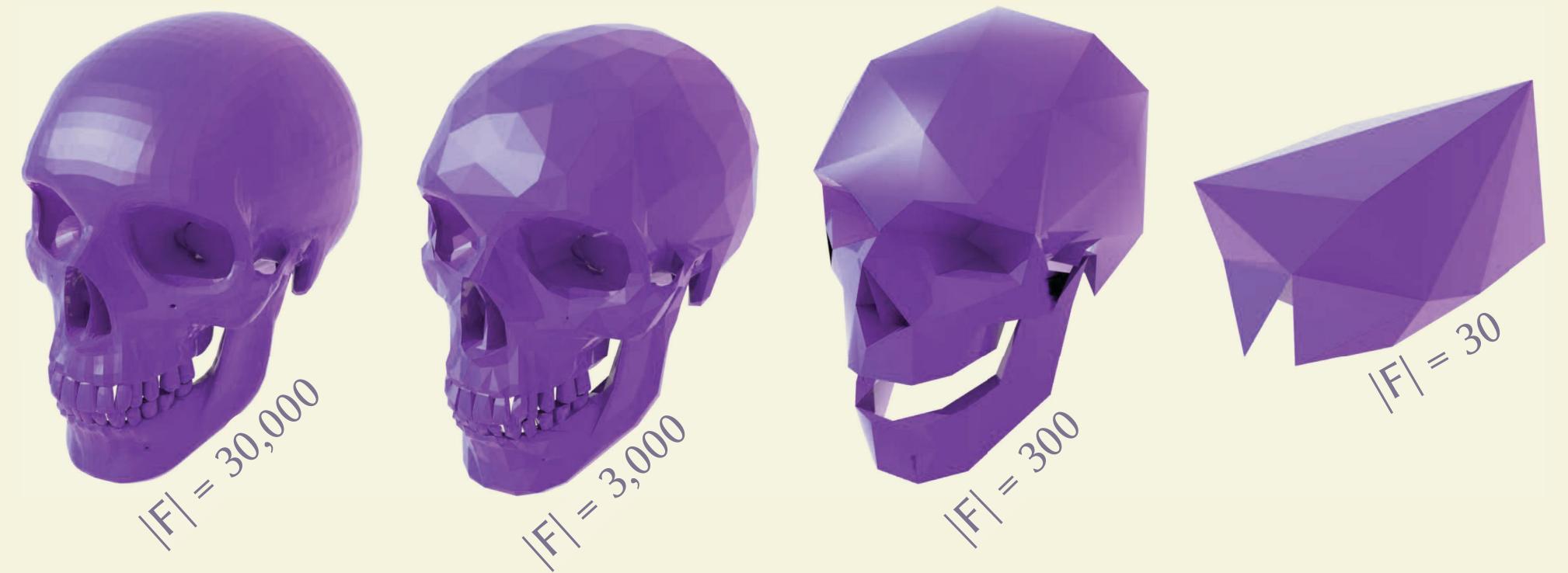
 $\lambda_3 = 1.747$



► motivation

Traditional goal: extrinsic simplification

- Find a coarse mesh close in space to the original
 - Often designed to optimize for visual fidelity





▶ motivation

Intrinsic problems benefit from intrinsic simplification

- Extrinsic methods preserve irrelevant extrinsic details
- Intrinsic approach opens up a larger space of triangulations
- Extreme example: neardevelopable surfaces

Intrinsic simp

extrinsic simplification

intrinsic simplification

► motivation

Inspiration: quadric error simplification

1. Local simplification operation

rithm which p s. Our algorit irs (a generali: eds, a geometr the current mo uadric matrice

n is able to sir ple, our imple of a 70,000 fac is also very s per vertex.

nations produ

gn nuenty to the original model. The primary fea tures of the model are preserved even after significant simplification.

can facilitate better approximations of models with many disconnected components. This also requires our algorithm to

support non-manifold¹ models.

The goal of polygonal surface simplification is to take a polygonal model as input and generate a simplified model (i.e., an approximation of the original) as output. We assume that the input model (M_n) has been that guilated the target approximation (M_g) will satisfy some given target criterion which is typically either a desired face count or a maximum tolerable error. We are interested in surface simplification algorithms that can be used in rendering systems for multiresolution modeling - the generation of models with appro-

priate levels of detail for the current context.

CR Categories: I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling-surface and object representations

1 Introduction

- Efficient and the second of a convirt of the second of the lution to accommodate this need for detail. However, the full complexity of such models is not always required, and since the computational cost of using a model is directly related to its complexity, it ACCU is useful to have simpler versions of complex models. Naturally, we would be to awan atically produce these simplified models. Re-
- goal

As with most other work in this area, we will focus on the simplification of polygonal models. We will assume that the model consists of triangles only. This implies no loss of generality since every

[Garland & Heckbert 1997]

Metrice 2. Accumulated distortion measurements

willing to sacrifice some additional storage, it would even be possible to eliminate this multiple counting using an inclusion-exclusion formula.

Thus, to compute the initial **Q** matrices required for our pair contraction algorithm, each vertex must accumulate the planes for the triangles which meet at that vertex. For each vertex, this set of planes defines several fundamental error quadrics K_p . The error quadric **Q** for this vertex is the sum of the fundamental quadrics. Note that the initial error estimate for each vertex is 0, since each vertex lies in the planes of all its incident triangles.

5.1 Geometric Interpretation

vertex

ely, the

ciate a

of the

s to its

uation ximate

mation

ies at a

at that

7, as [7]

→ v us-

require

ication

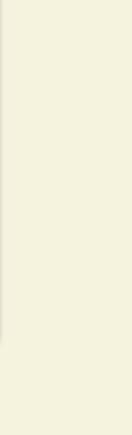
c form:

(2)

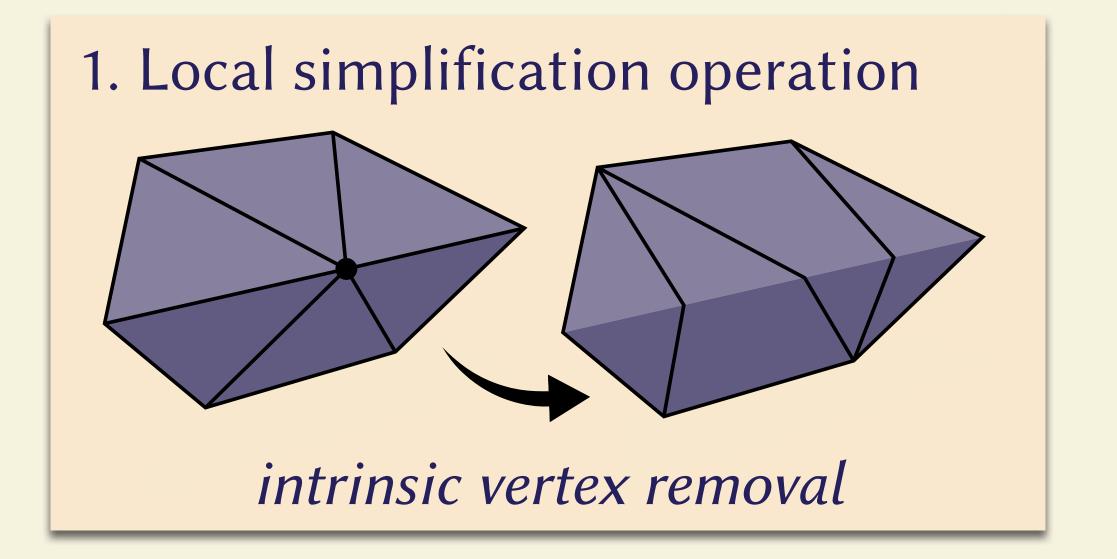
As we will see, our plane-based error quadrics produce fairly high quality approximations. In addition, they also possess a useful geometric meaning³.

The level surfaces of these quadrics are almost always ellipsoids. In some circumstances, the level surfaces may be degenerate. For instance, parallel planes (e.g., around a planar surface region) will produce level surfaces which are two parallel planes, and planes which are all parallel to a line (e.g., around a linear surface crease) will produce cylindrical level surfaces. The matrix used for find-

motivation

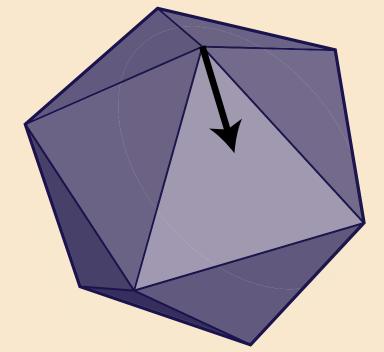


Intrinsic simplification



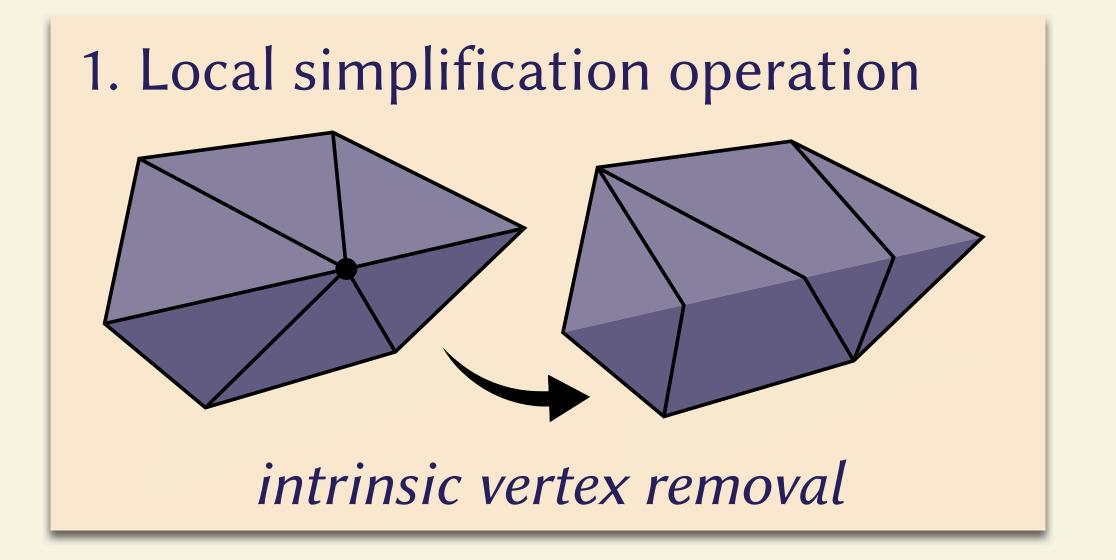
• Algorithm: repeatedly remove cheapest vertex

2. Accumulated distortion measurements



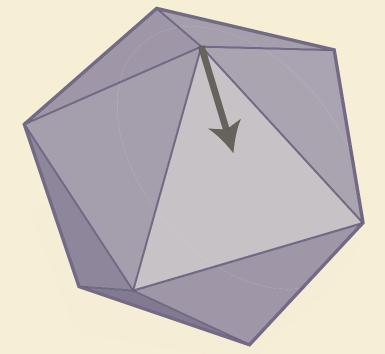
intrinsic curvature error

Intrinsic simplification



Algorithm: repeatedly remove cheapest vertex

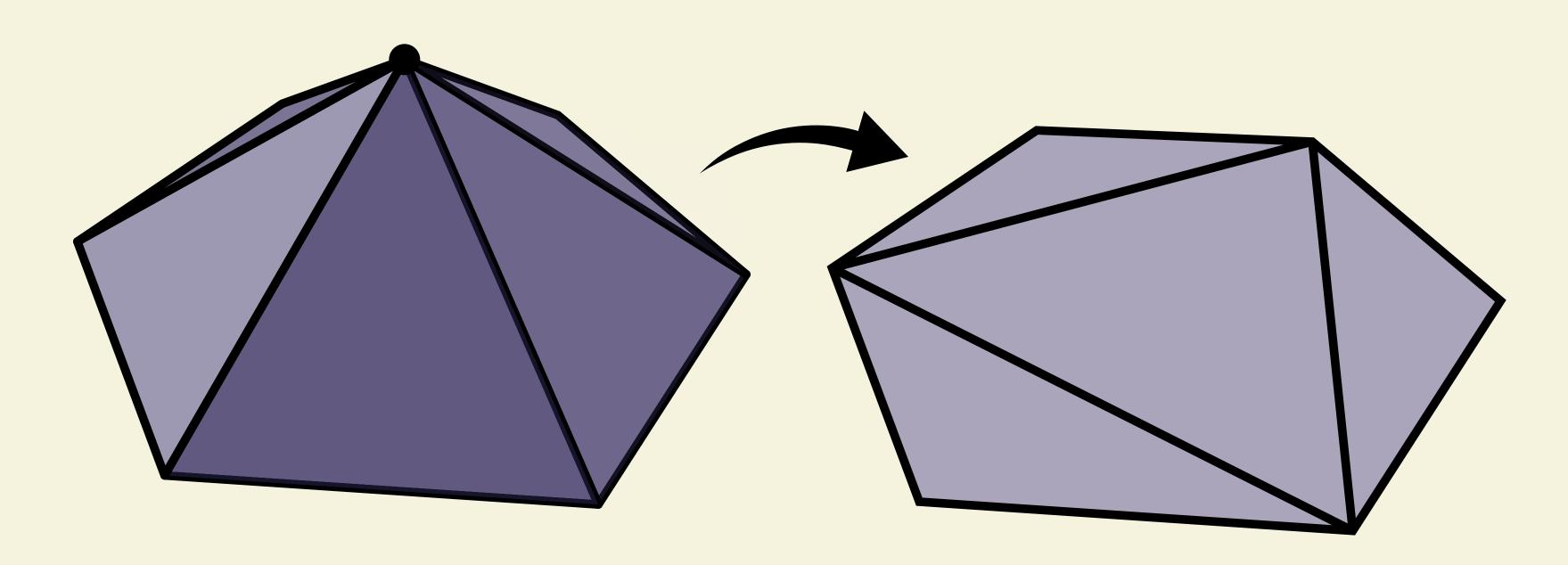
2. Accumulated distortion measurements



intrinsic curvature error

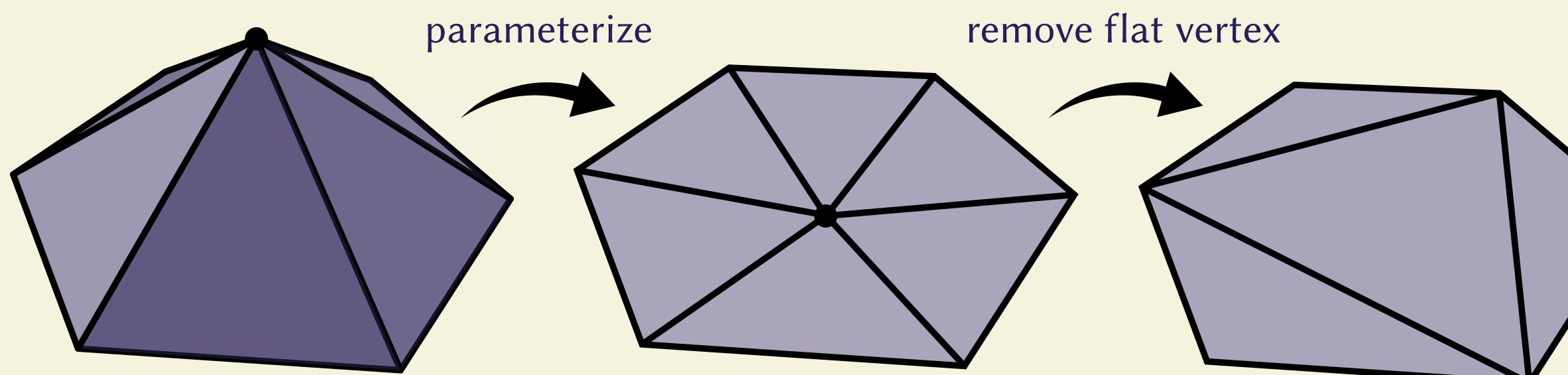
Intrinsic vertex removal

• Intrinsic view: replace curved vertex with flat patch

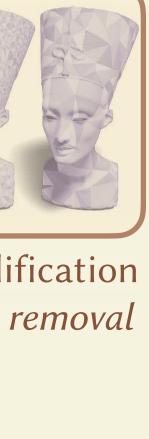


Intrinsic vertex removal

• Intrinsic view: replace curved vertex with flat patch

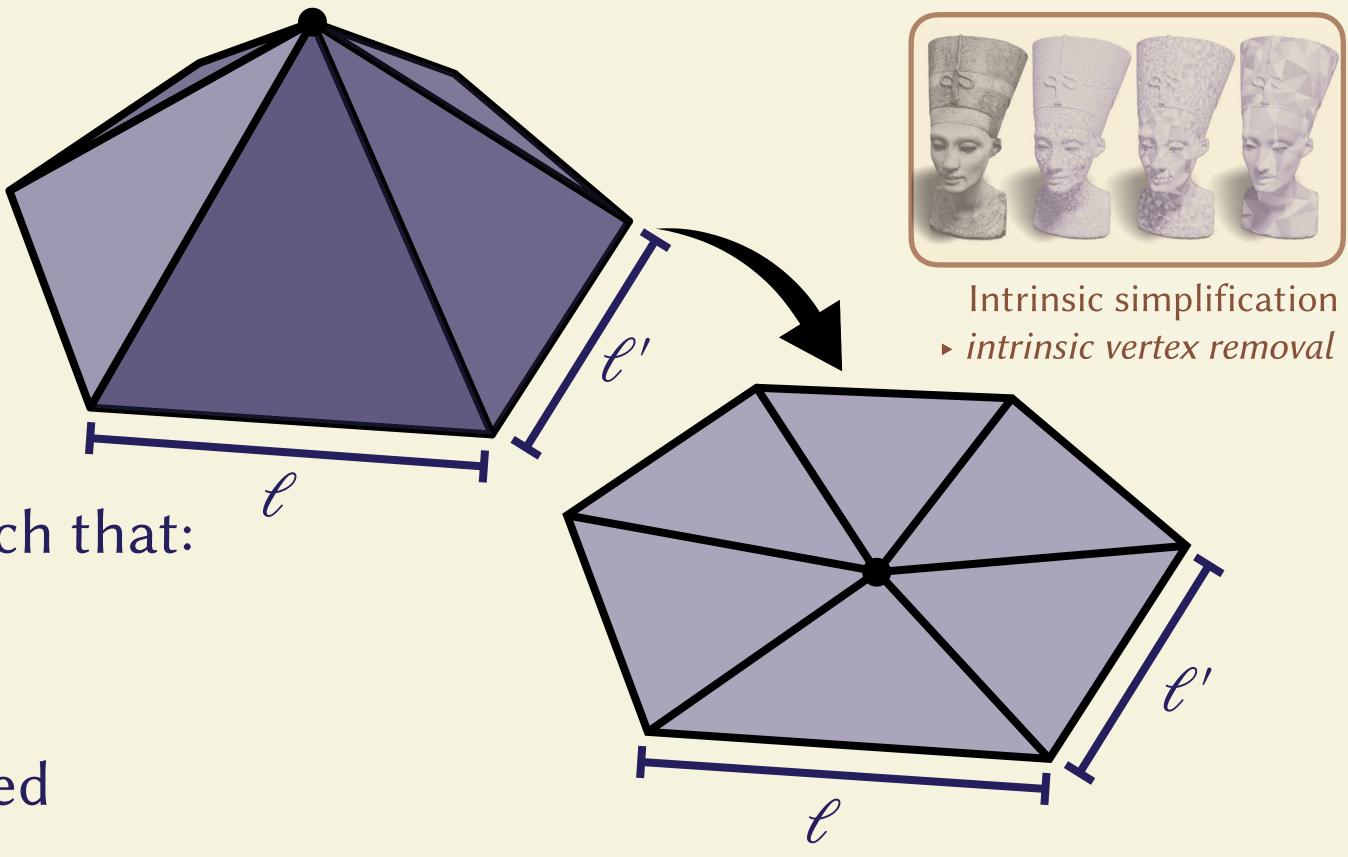


Intrinsic simplification intrinsic vertex removal

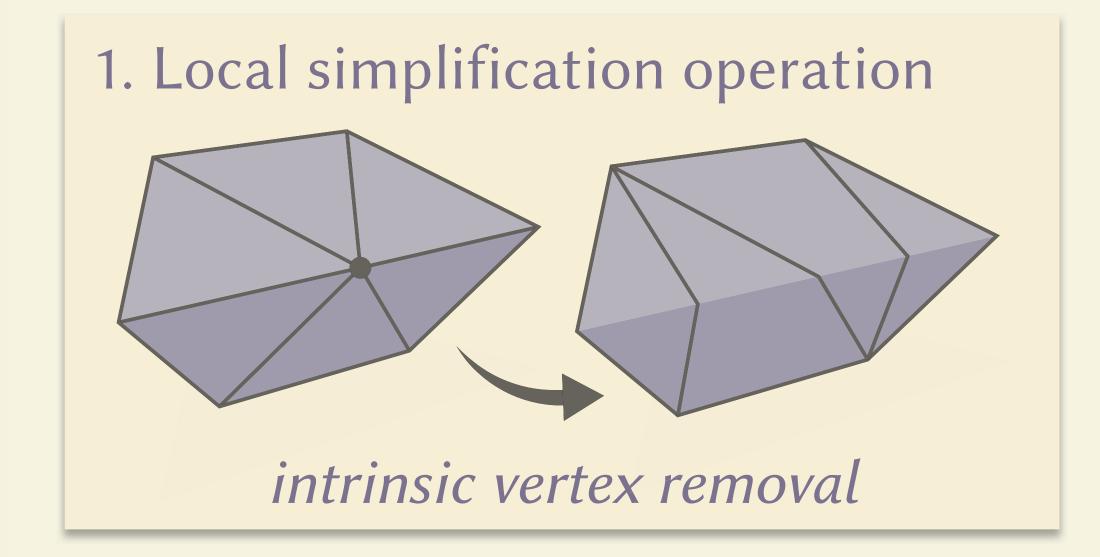


Vertex flattening

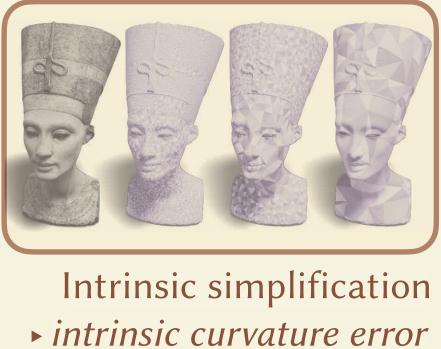
- Map neighboring triangles to plane such that:
 (1) Distortion is low
 - (2) Boundary edge lengths are preserved
- Discrete conformal parameterization [Springborn, Schröder & Pinkall 2008]
 - 1D convex optimization problem
- Flat vertex removal also a standard operation



Intrinsic simplification

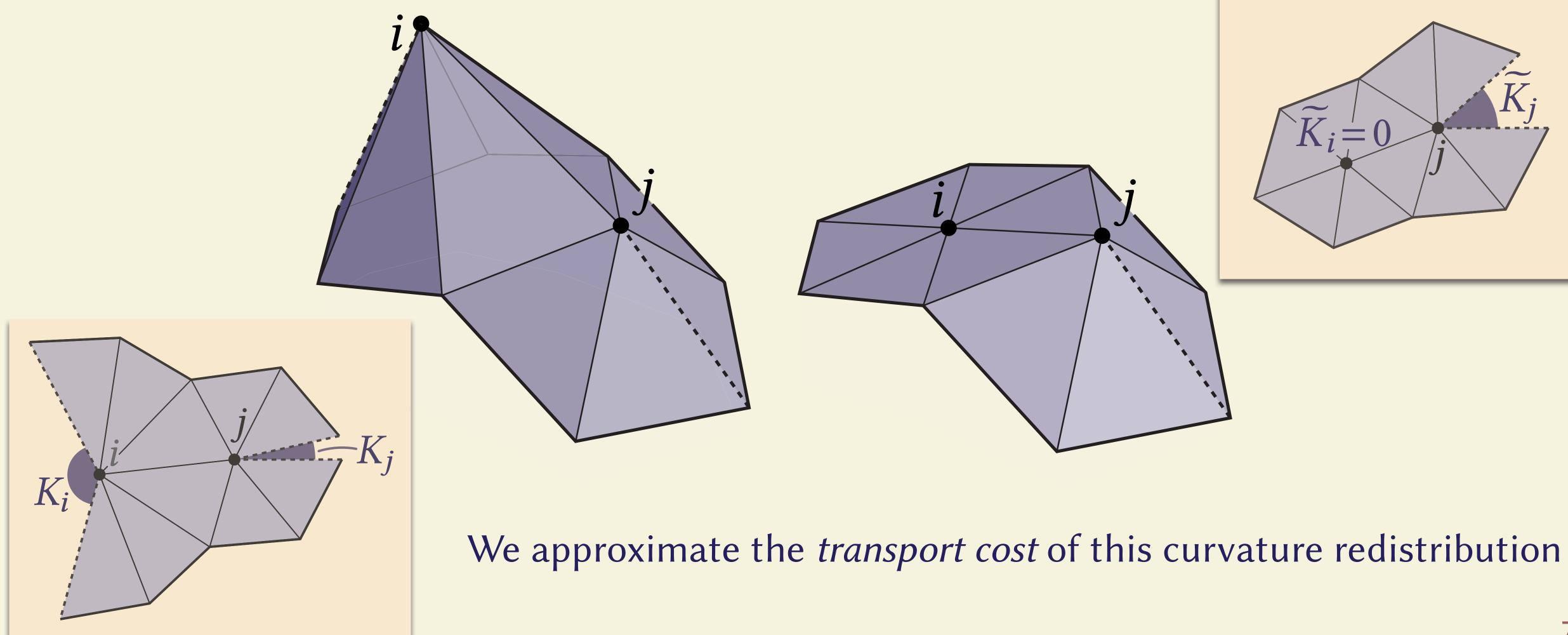


Algorithm: repeatedly remove cheapest vertex



2. Accumulated distortion measurements intrinsic curvature error

Distortion: curvature redistribution



Intrinsic simplification intrinsic curvature error

Simplification with the curvature transport cost

man nput mesh

coarsening via curvature transport cost

Intrinsic simplification*intrinsic curvature error*

74

Other transport costs

• Track transport cost of other data in same way

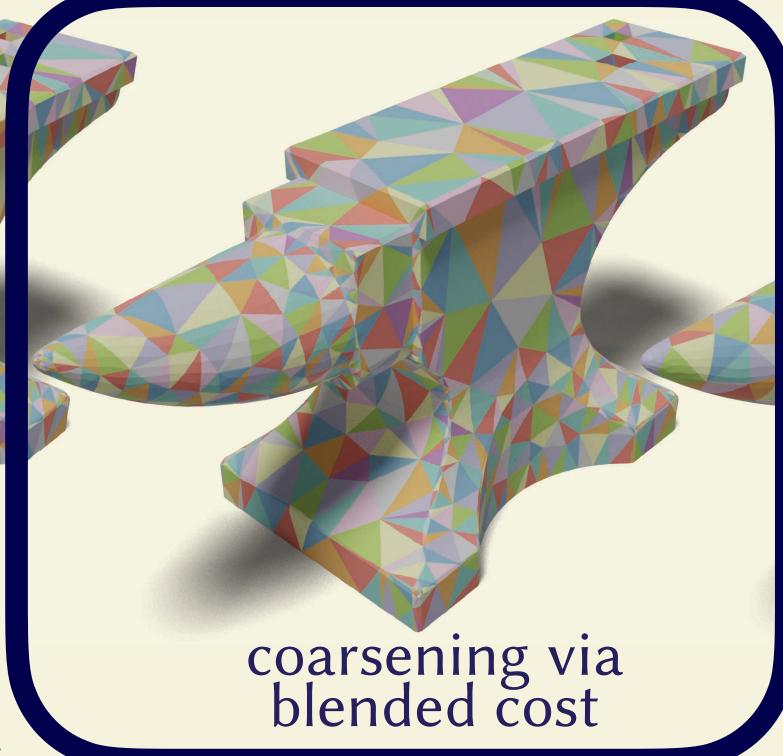
mesh

input

Can take weighted combinations of costs

coarsening via curvature transport cost

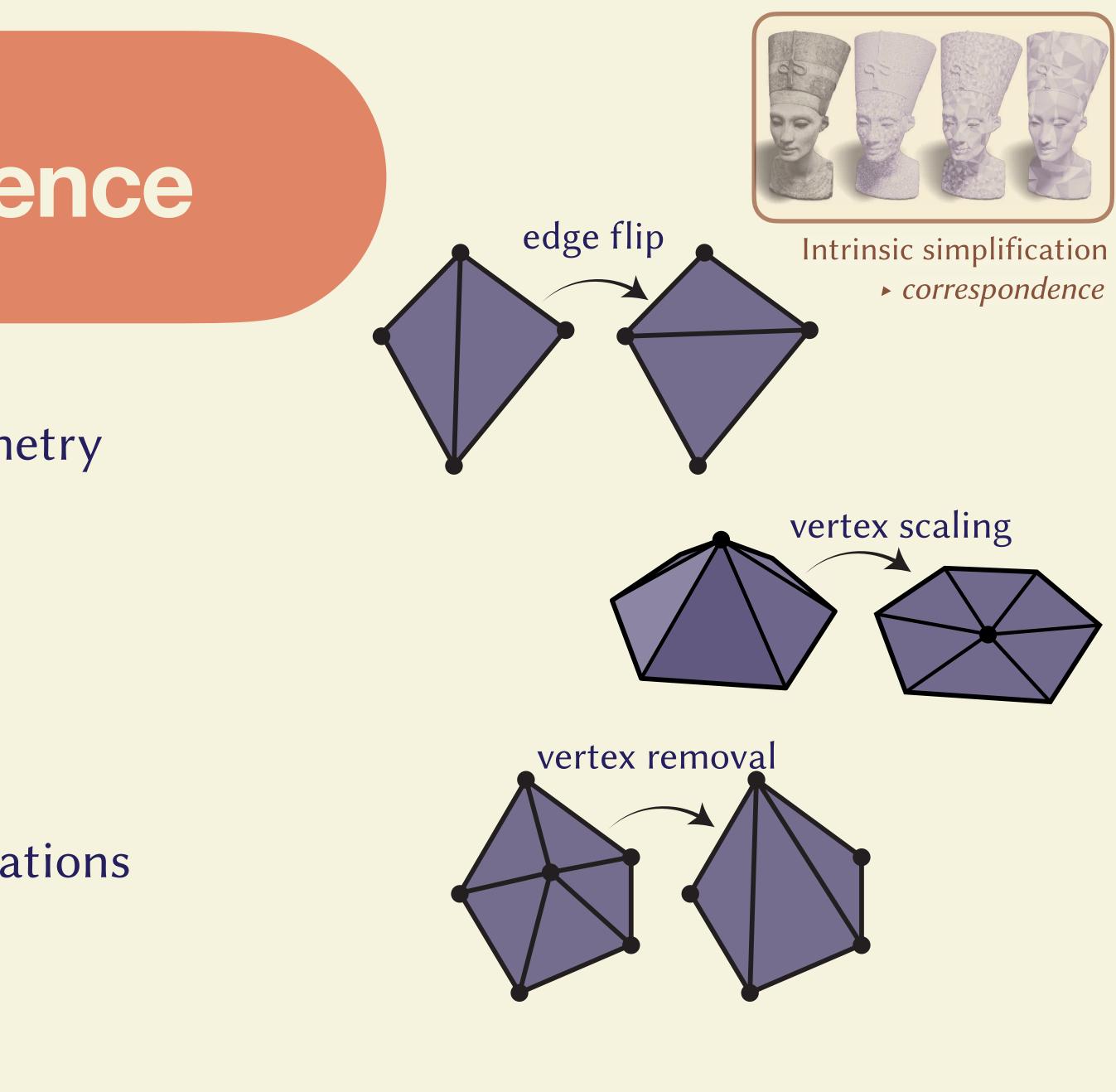
Intrinsic simplification intrinsic curvature error



coarsening via area transport cost

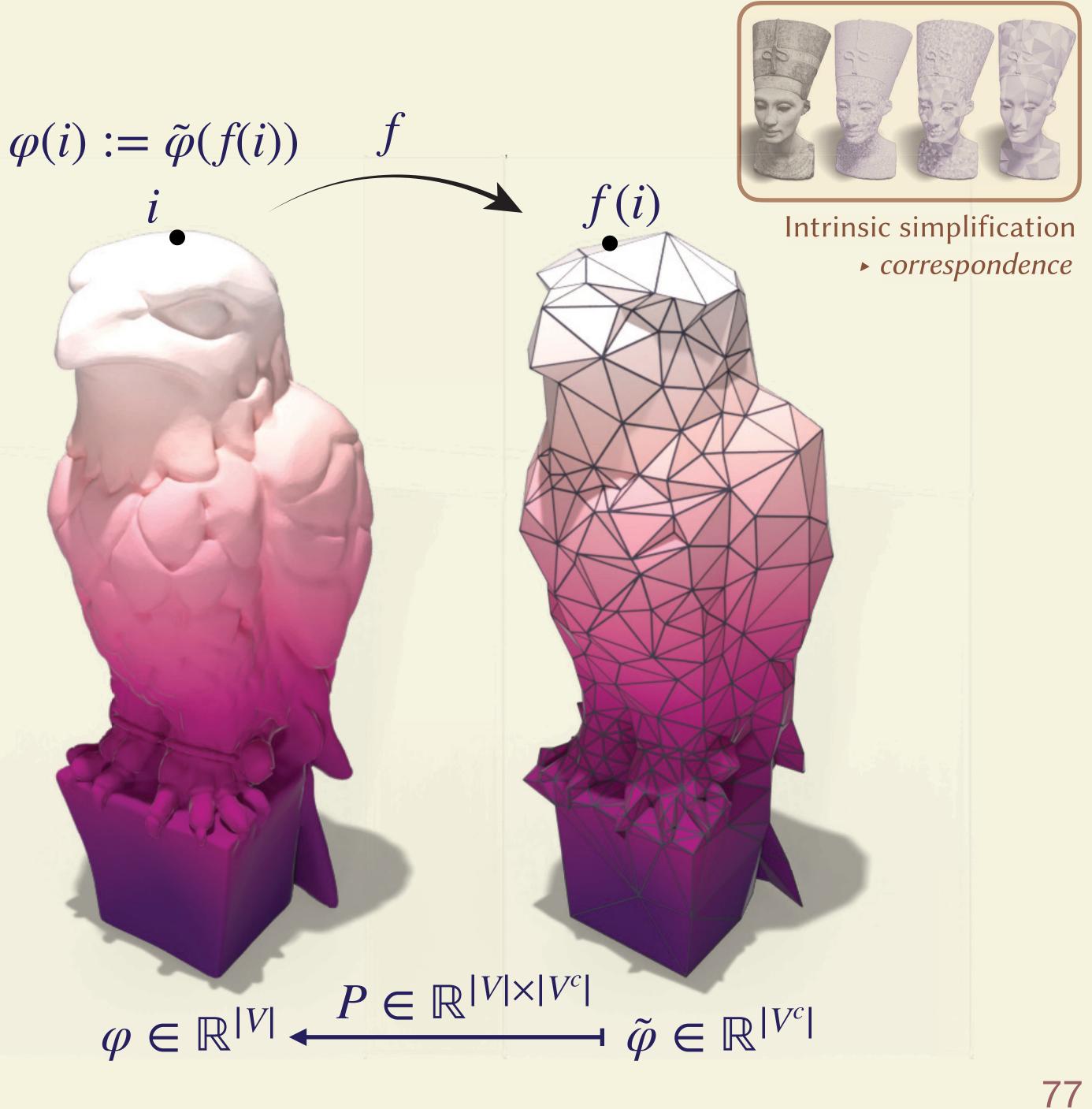
Surface correspondence

- Simplifying the mesh changes its geometry
 - Breaks existing data structures
- But, only uses a few local operations
 - Each is a simple mapping
- Encode correspondence via list of operations
 - 1. Flip edge 1
 - 2. Scale vertex 5
 - *3. Remove vertex 5*
 - 4. Flip edge 8
 - 5. Flip edge 12
 - 6. Scale vertex 2



Prolongation

- Transfer piecewise-linear functions:
 - Just find values at vertices
 - Encode by a matrix



Examples

Computing geodesic distance

(Computed via [Mitchell, Mount & Papadimitriou 1987]) ³⁵⁰k vertices

ground truth

III. Intrinsic simplification

mesh 1000x smaller .03% relative error (4x lower than extrinsic simplification)

result on simplified surface

Surface hierarchies [V]=288k [V]=18k

input

|V|**1**,009,118

|V|=72k

Intrinsic simplification

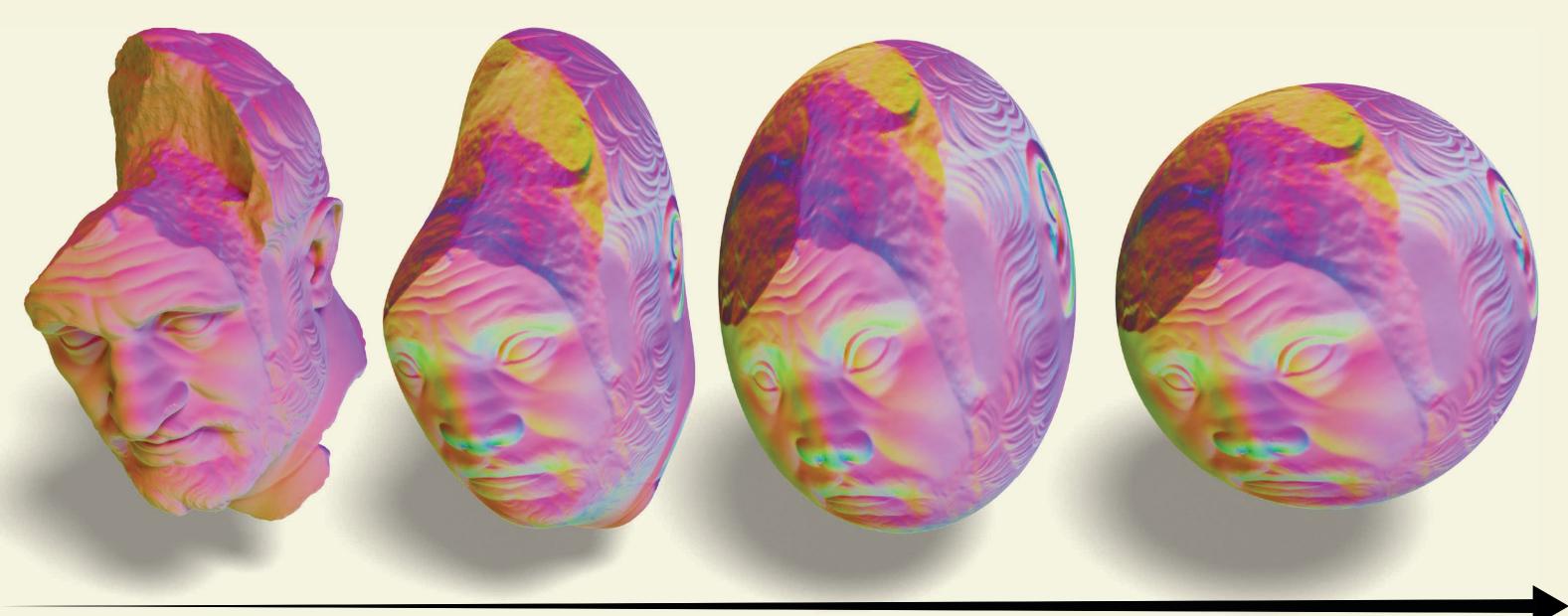
|V|=282

|V|=1k

|V|=4k

Hierarchies accelerate computation

- Accelerate geometric computations
 - Even helps with extrinsic problems



mean curvature flow 20x speedup

Robust hierarchy construction

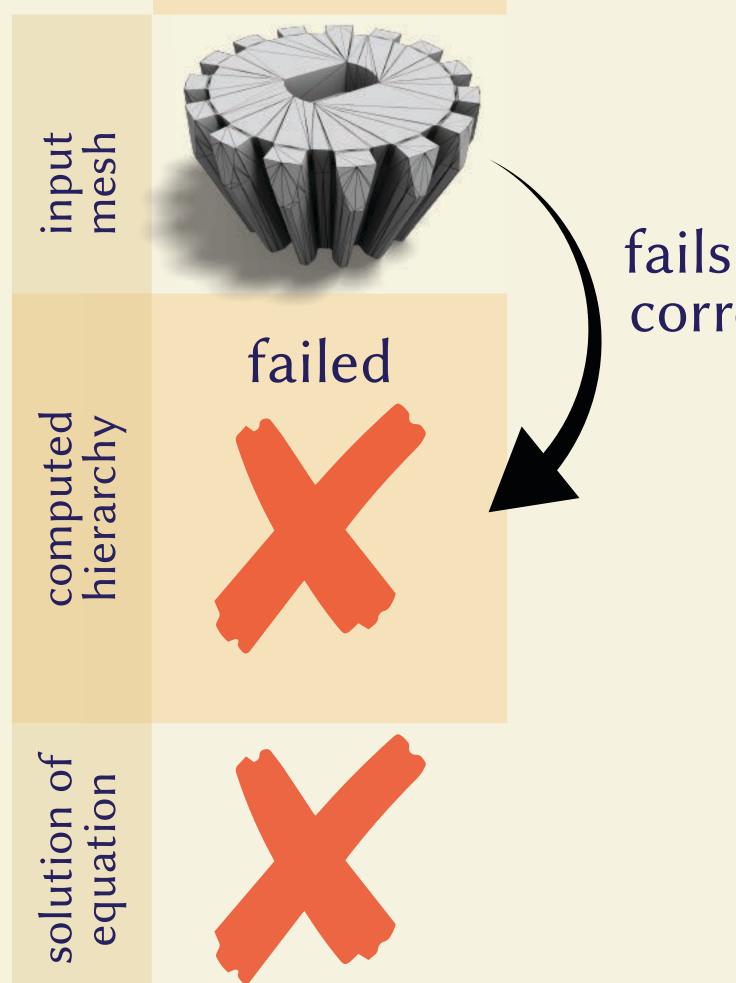
extrinsic hierarchy [Liu+ 2021]



fails to compute correspondence

Robust hierarchy construction

extrinsic hierarchy [Liu+ 2021]

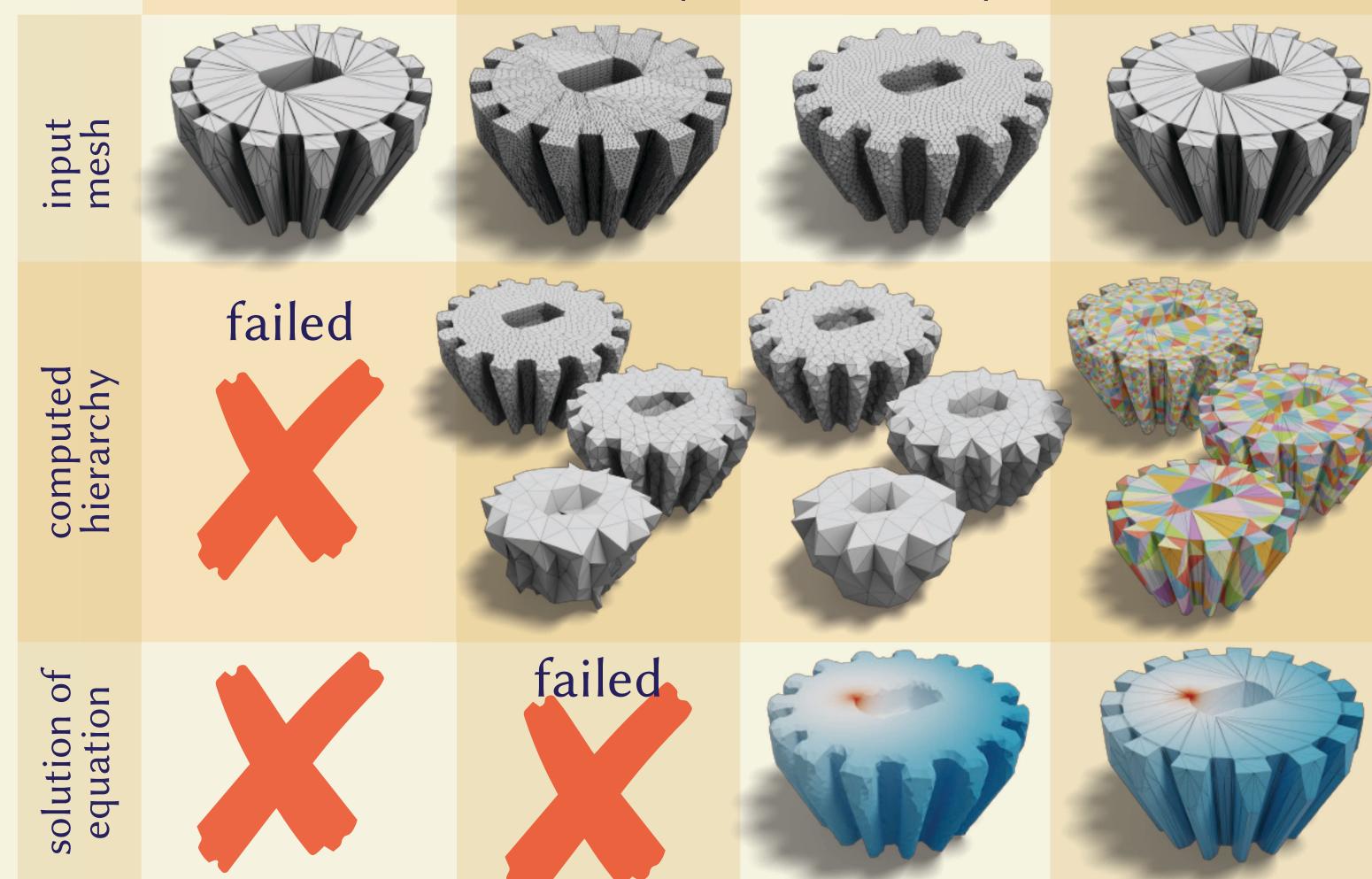


fails to compute correspondence

Robust hierarchy construction

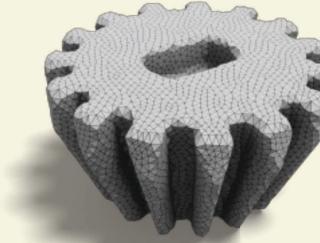
extrinsic hierarchy [Liu+2021]

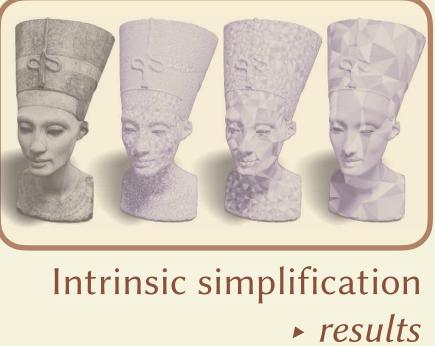
extrinsic refinement + hierarchy



extrinsic remeshing + hierarchy

intrinsic hierarchy (ours)





Performance

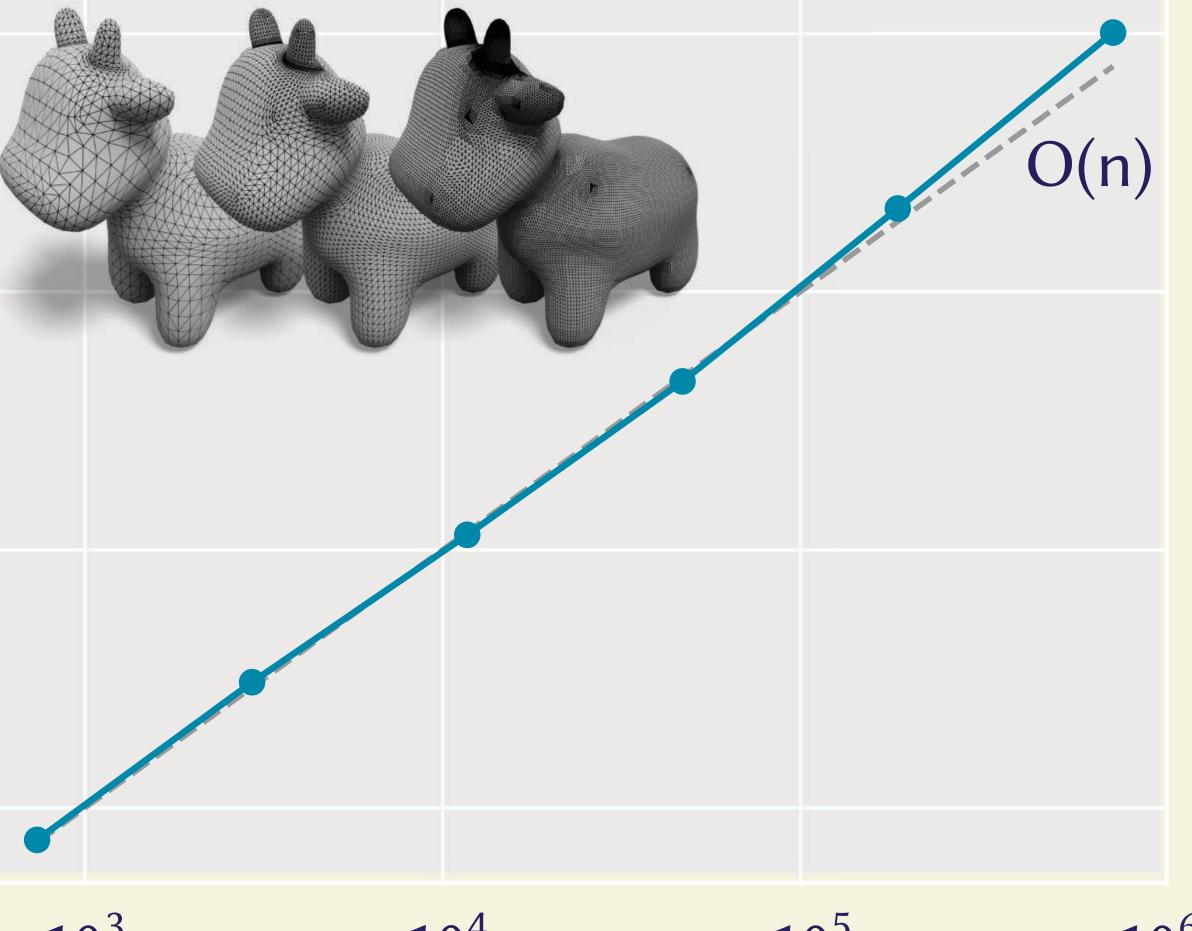
- Linear scaling
 - Constant work per vertex

Removes ~13,000 vertices per second time (s) **10²**

10¹

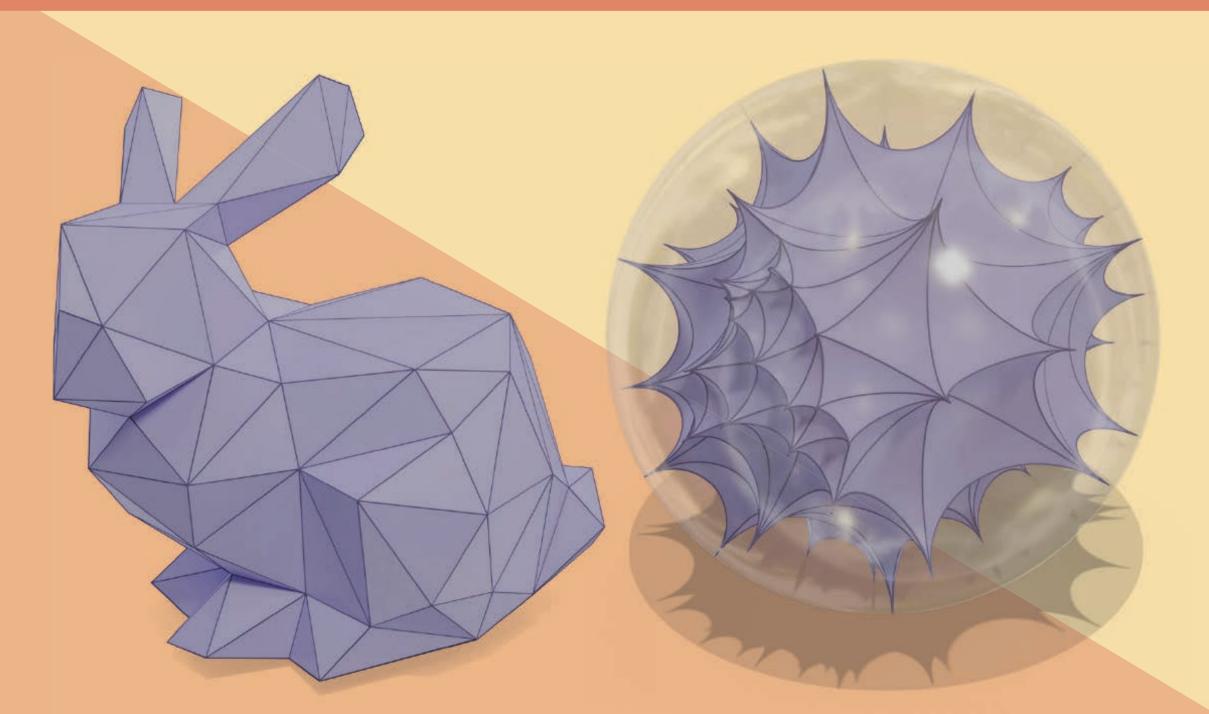
10⁰

 10^{-1}

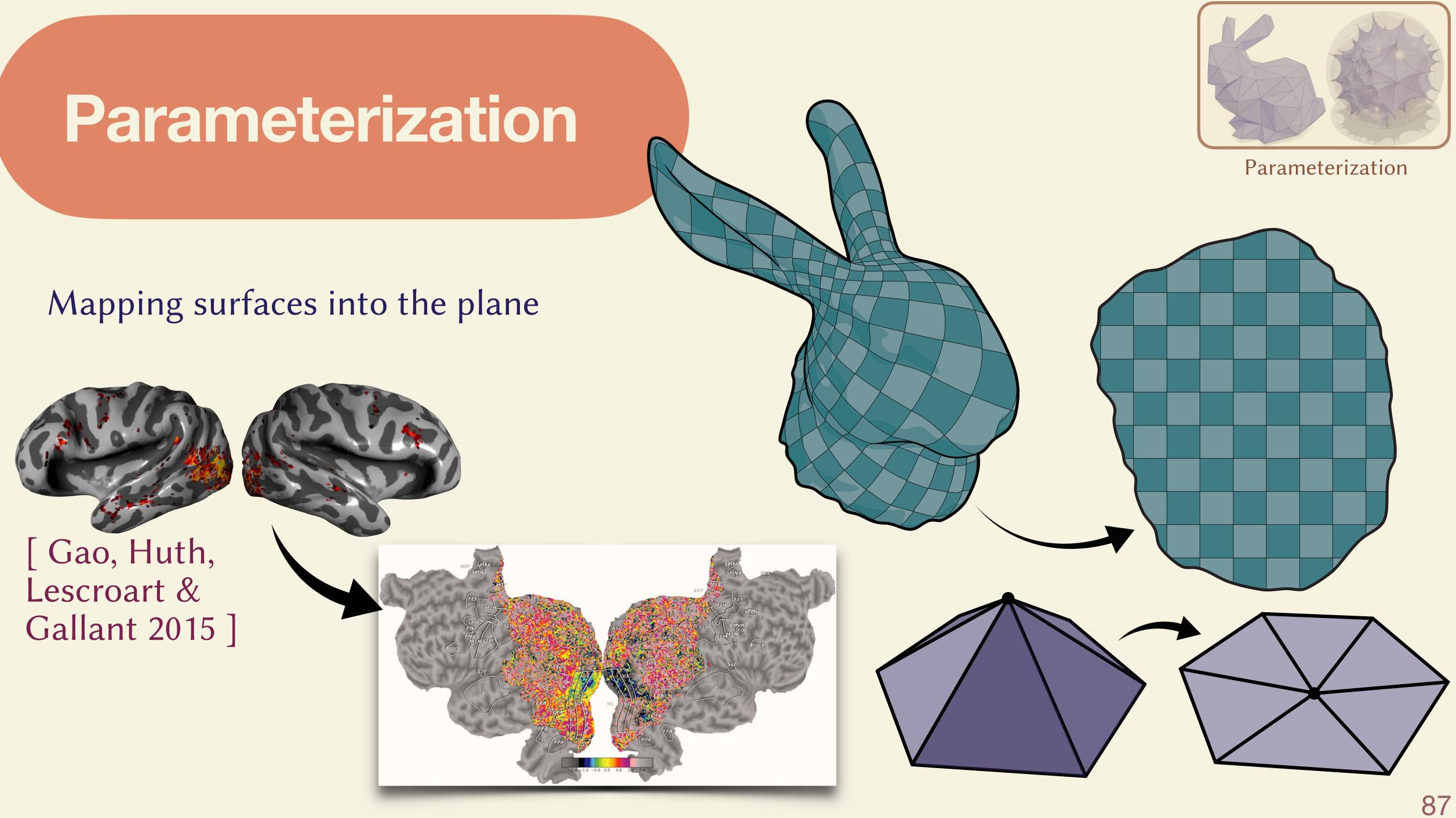


10³ 10⁴ **10**⁵ 10⁶ # input vertices

IV. Surface Parameterization

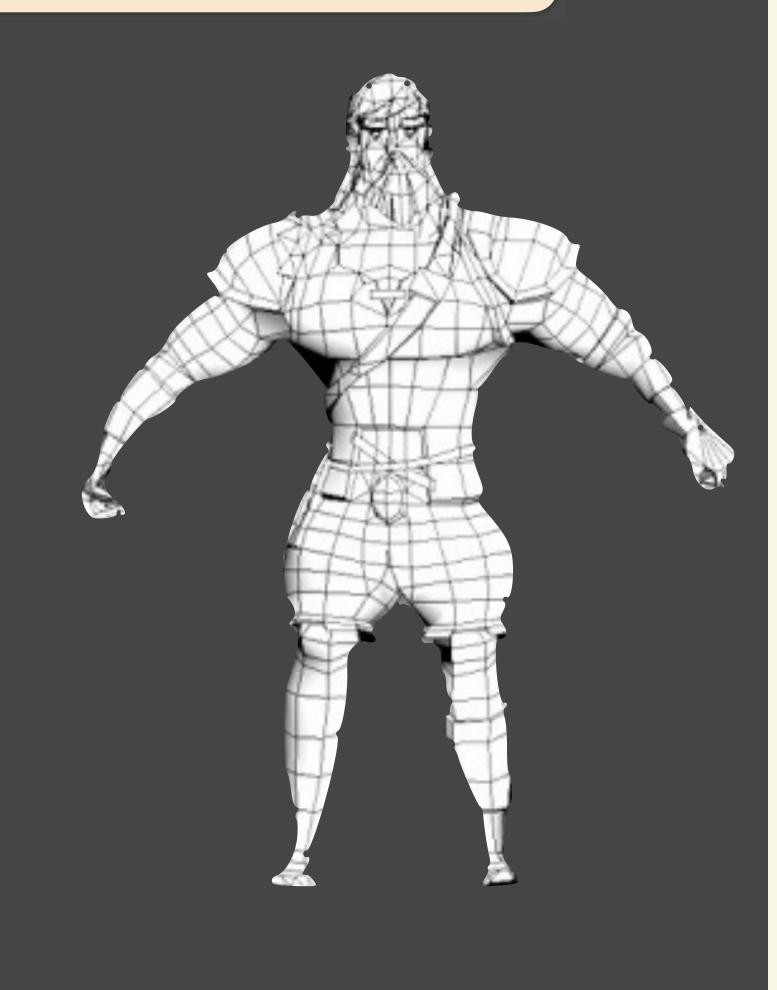


Gillespie, Springborn, & Crane. 2021. Discrete conformal equivalence of polyhedral surfaces. ACM Transactions on Graphics



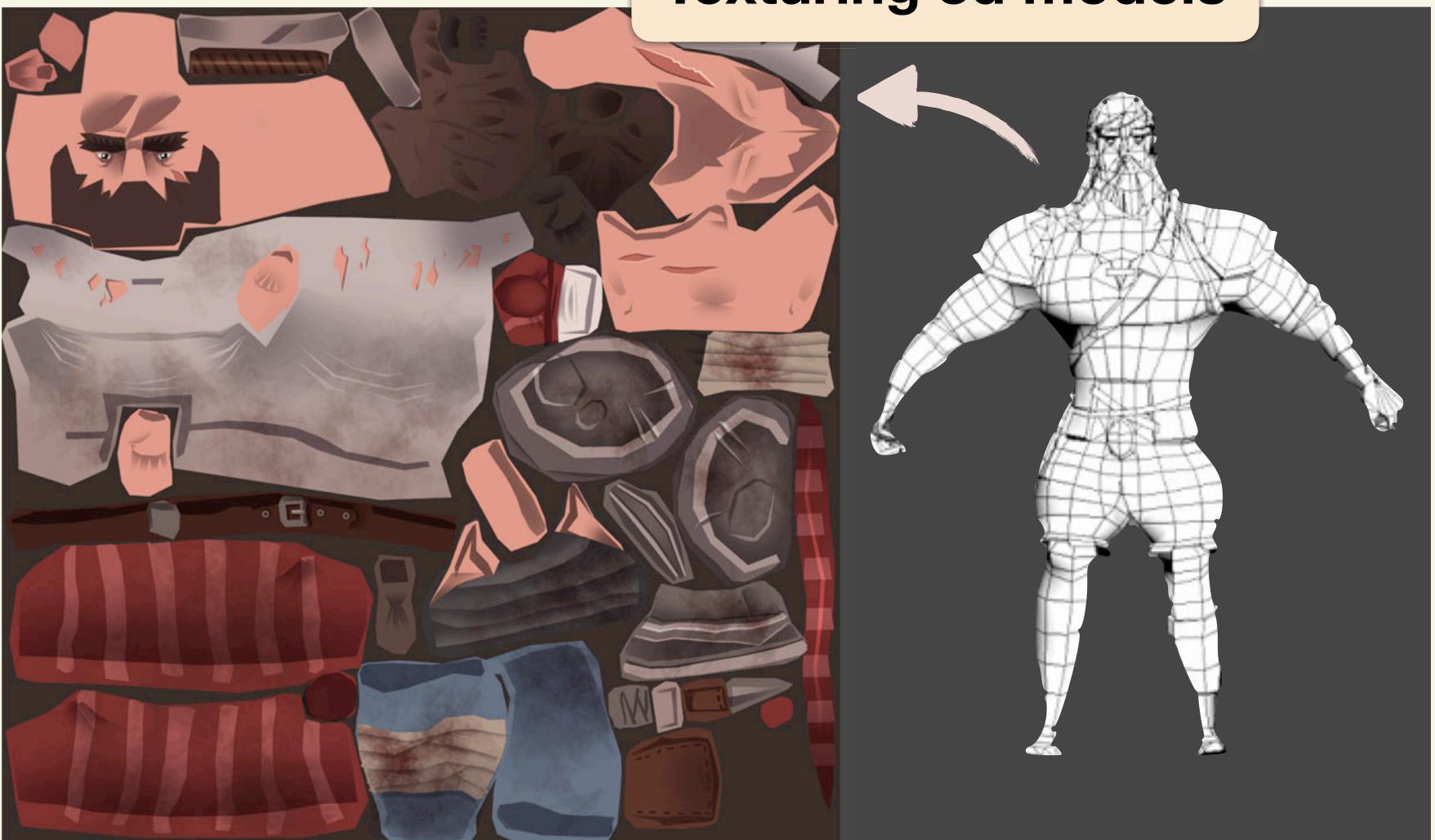
Applications of parameterization

Texturing 3d models



Timen 2012]

Applications of parameterization



Texturing 3d models

imen 2012]

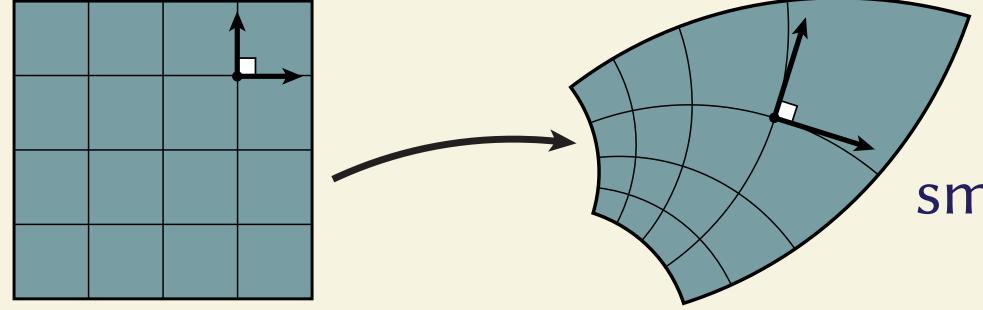
Applications of parameterization

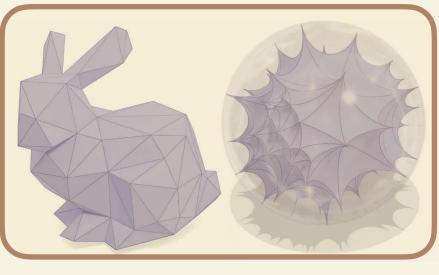
Texturing 3d models

Timen 2012]

The uniformization theorem [Poincare 1907; Koebe 1907; Troyanov 1991]

Any surface is conformally equivalent to a surface of constant curvature.





Parameterization

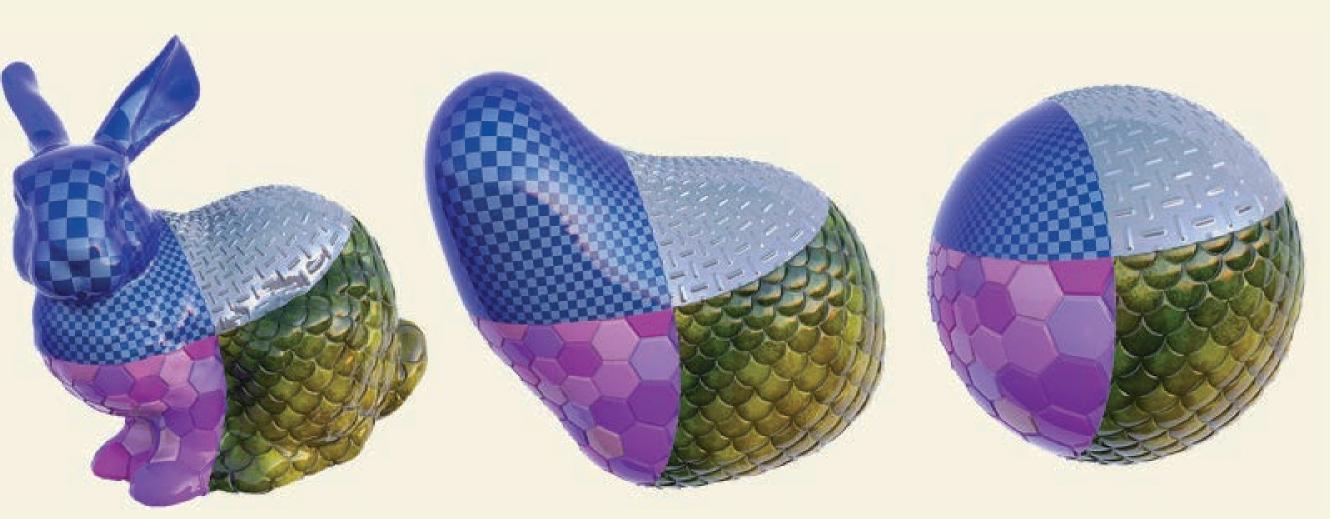


Image: [Crane, Pinkall & Schröder 2013]

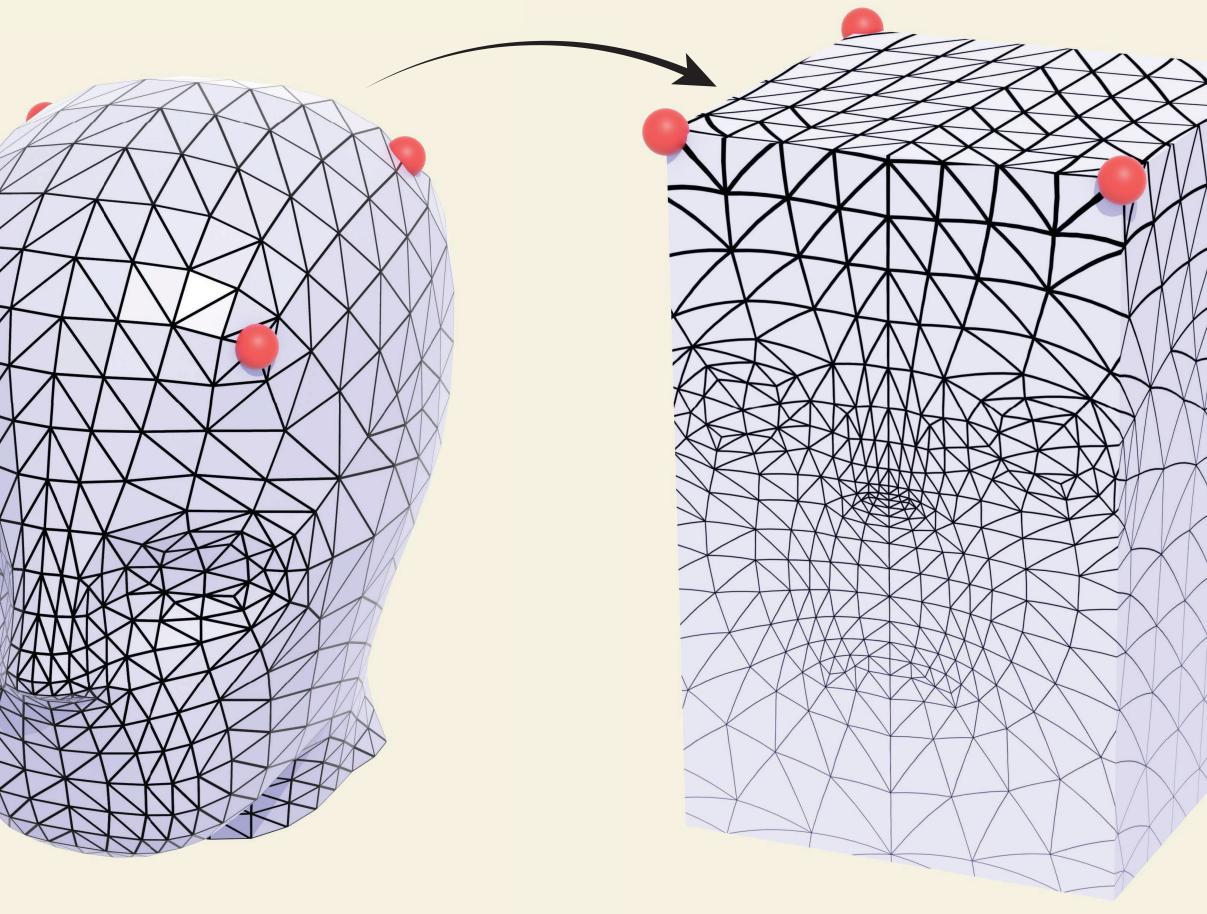
conformal map = angle-preserving smooth maps with helpful properties

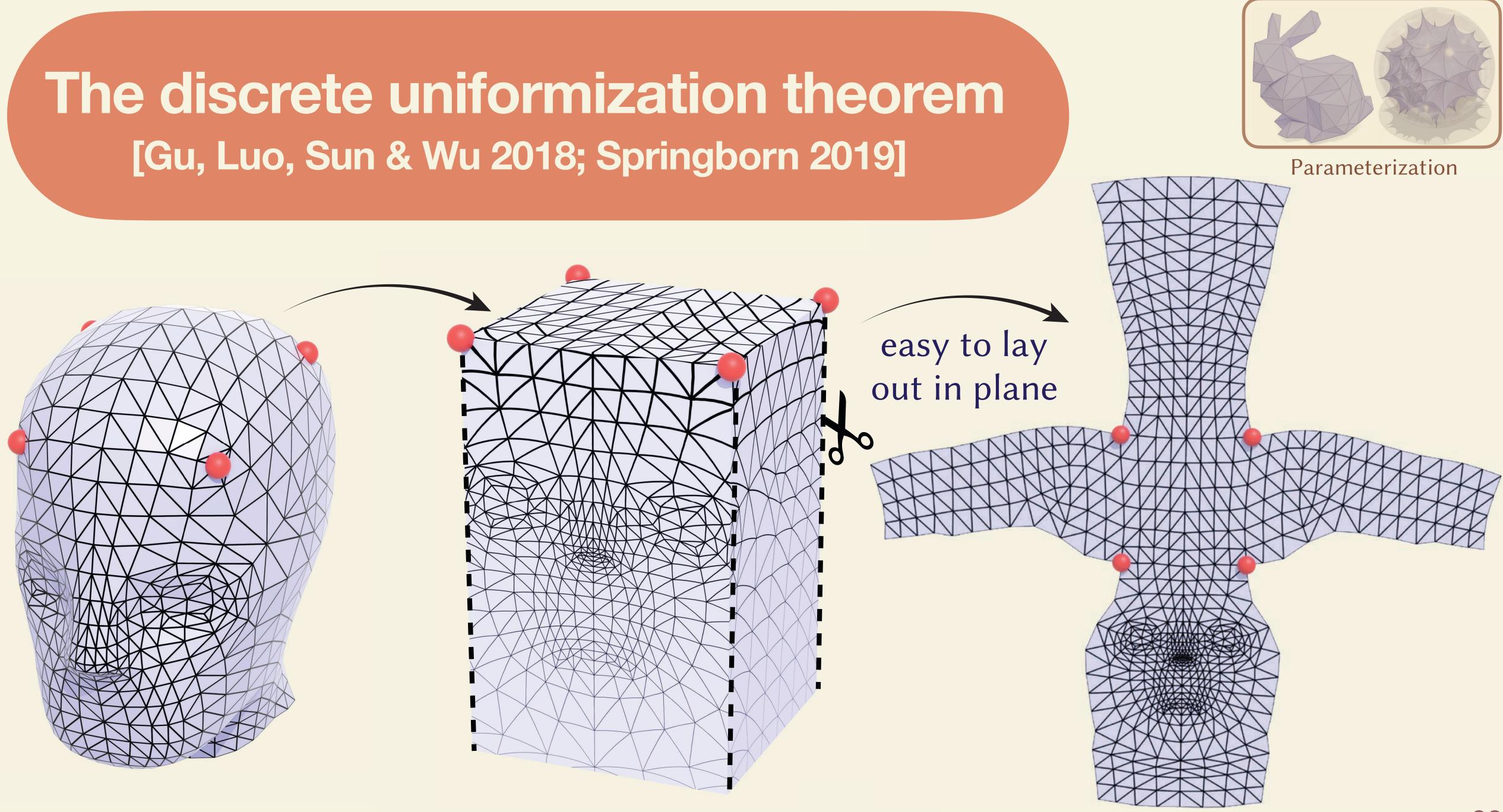
The discrete uniformization theorem [Gu, Luo, Sun & Wu 2018; Springborn 2019]

Any valid[†] vertex curvatures can be realized by some discrete conformal map.

†i.e. $\leq 2\pi$ and satisfying Gauss-Bonnet

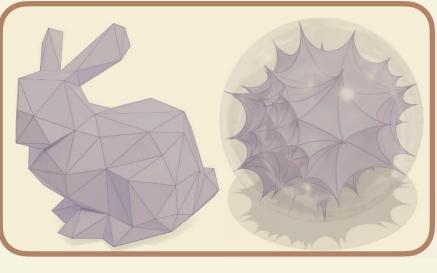
Parameterization



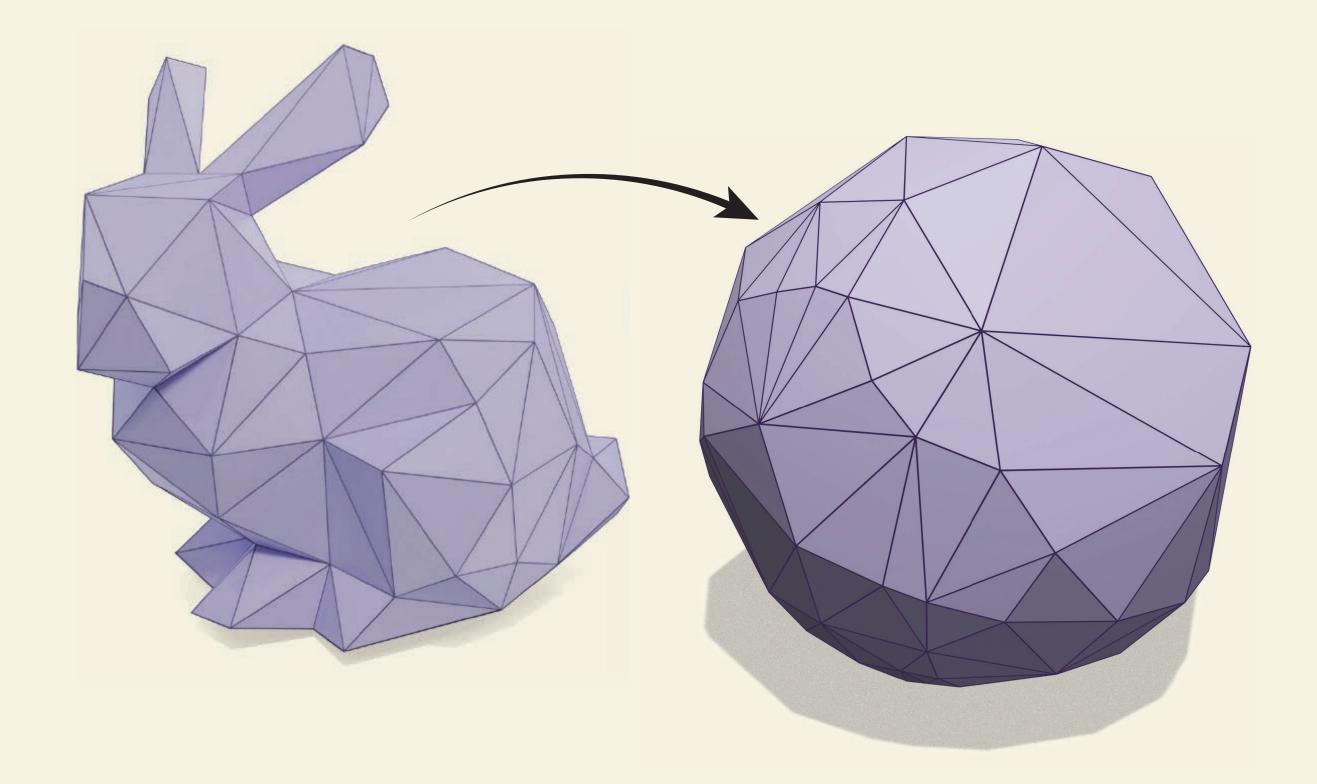


The discrete spherical uniformization theorem [Springborn 2019]

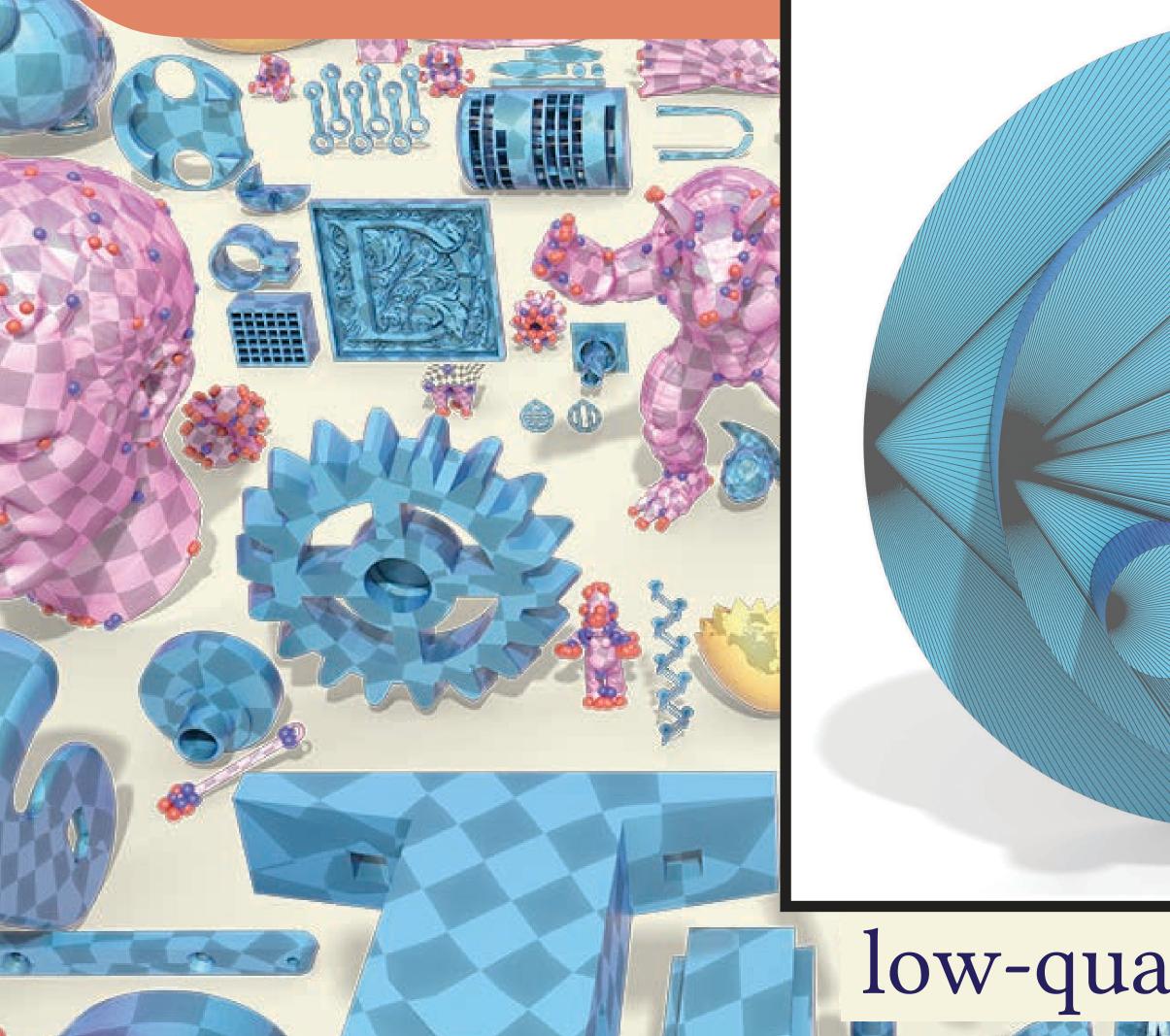
Any simply-connected triangle mesh is discretely conformally equivalent to a mesh whose vertices lie on the unit sphere



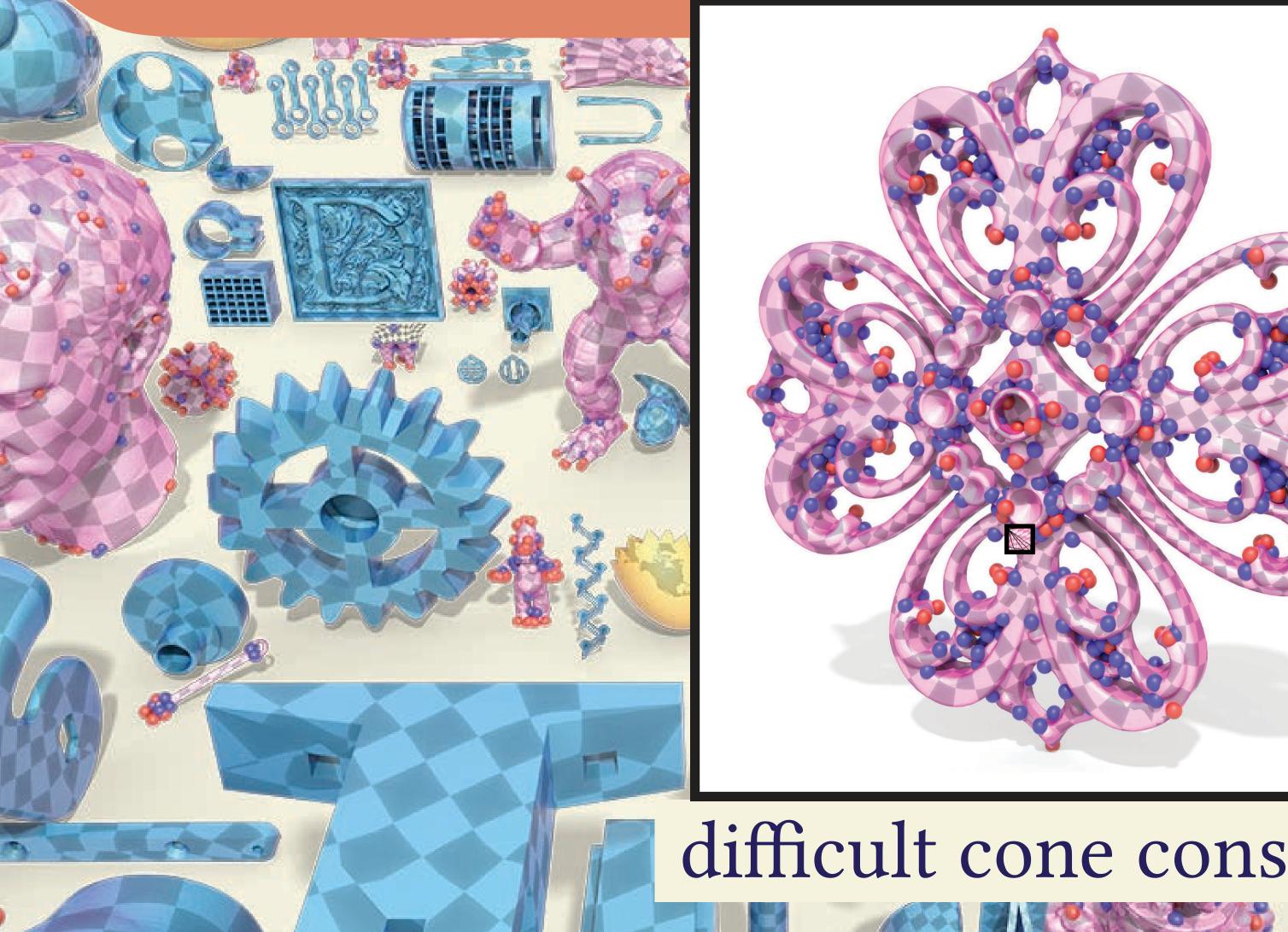
Parameterization

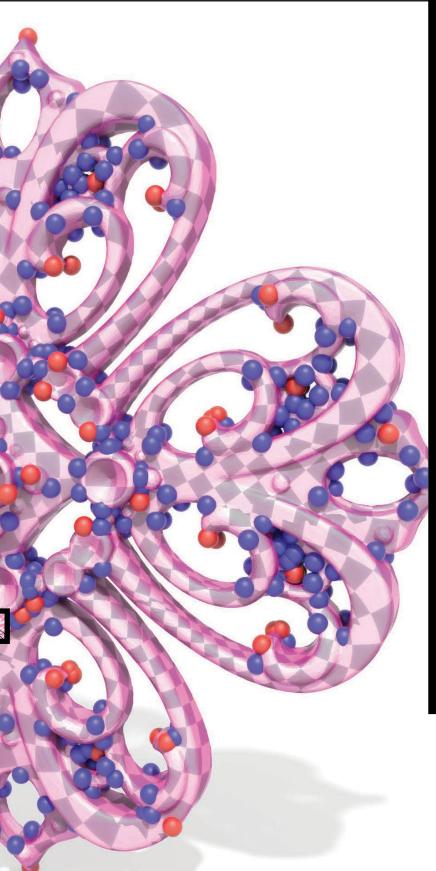


94

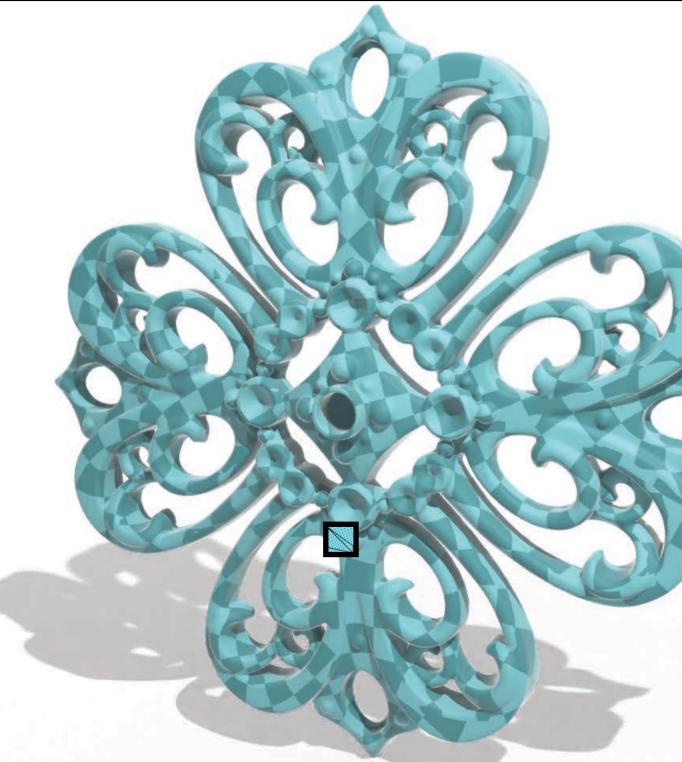


low-quality meshes





difficult cone constraints



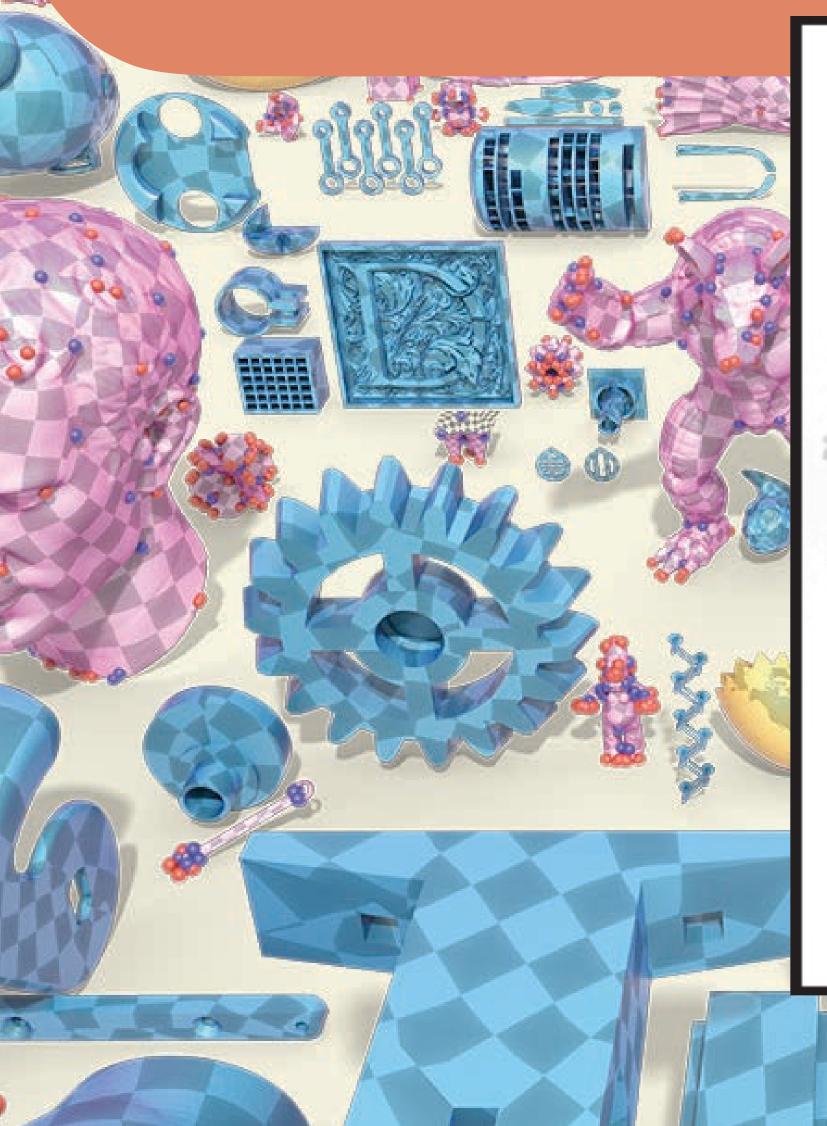
[Sawhney & Crane 2017]

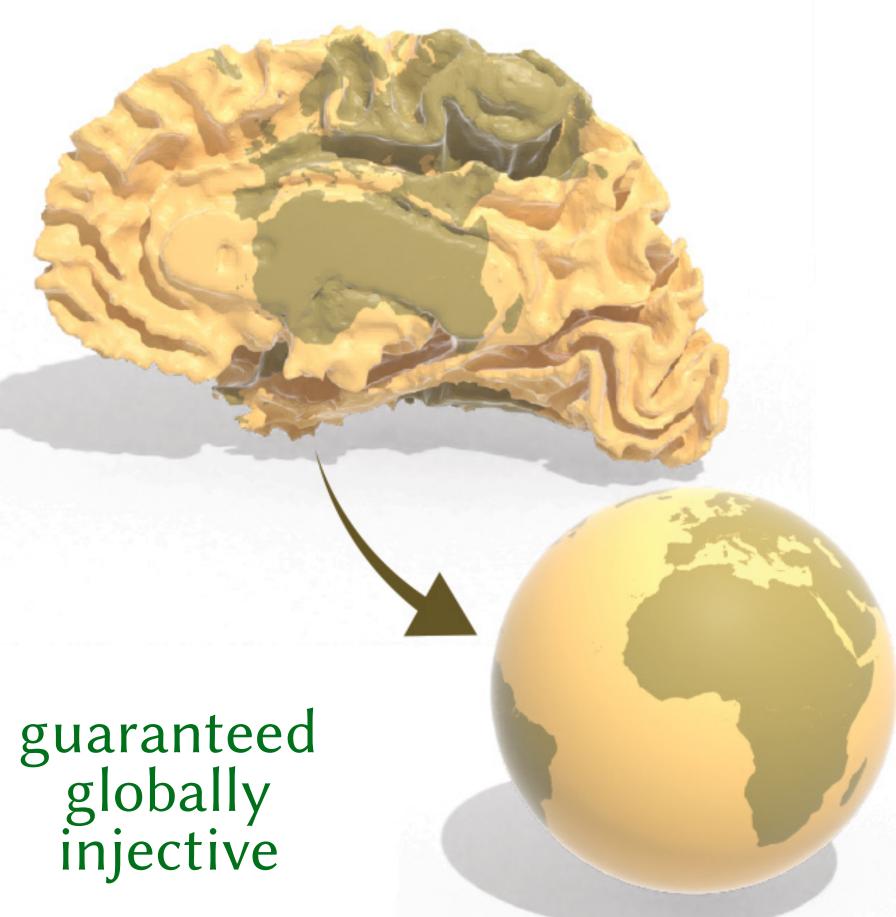
provably locally injective

not locally injective

[Sawhney & Crane 2017]

difficult cone constraints





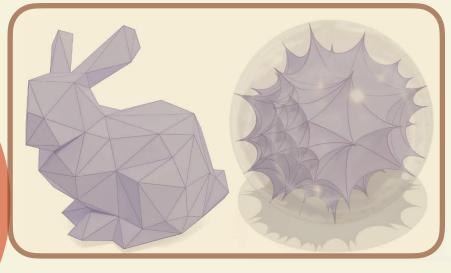
maps to the sphere

Triangle mesh \leftrightarrow **hyperbolic polyhedron** [Bobenko, Pinkall & Springborn 2010]

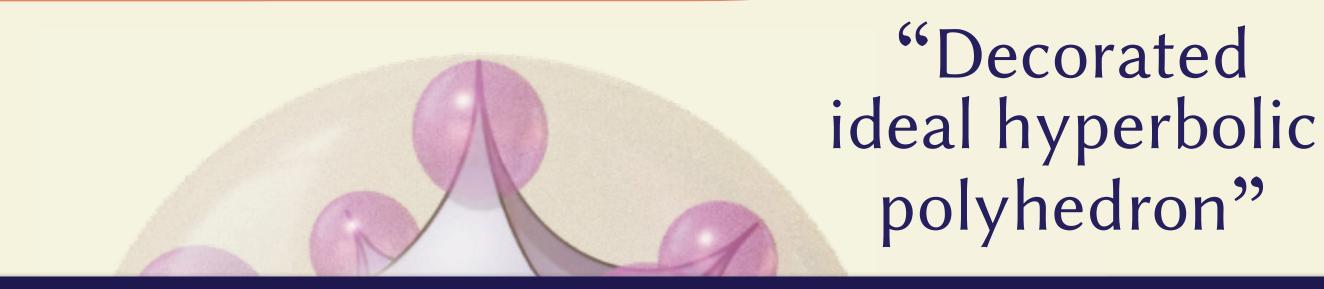
Triangle mesh

To encode an evolving *Euclidean* polyhedron we can store a static *hyperbolic* polyhedron.

Conformal changes to Euclidean geometry

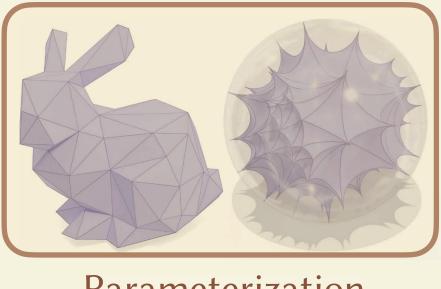


Parameterization



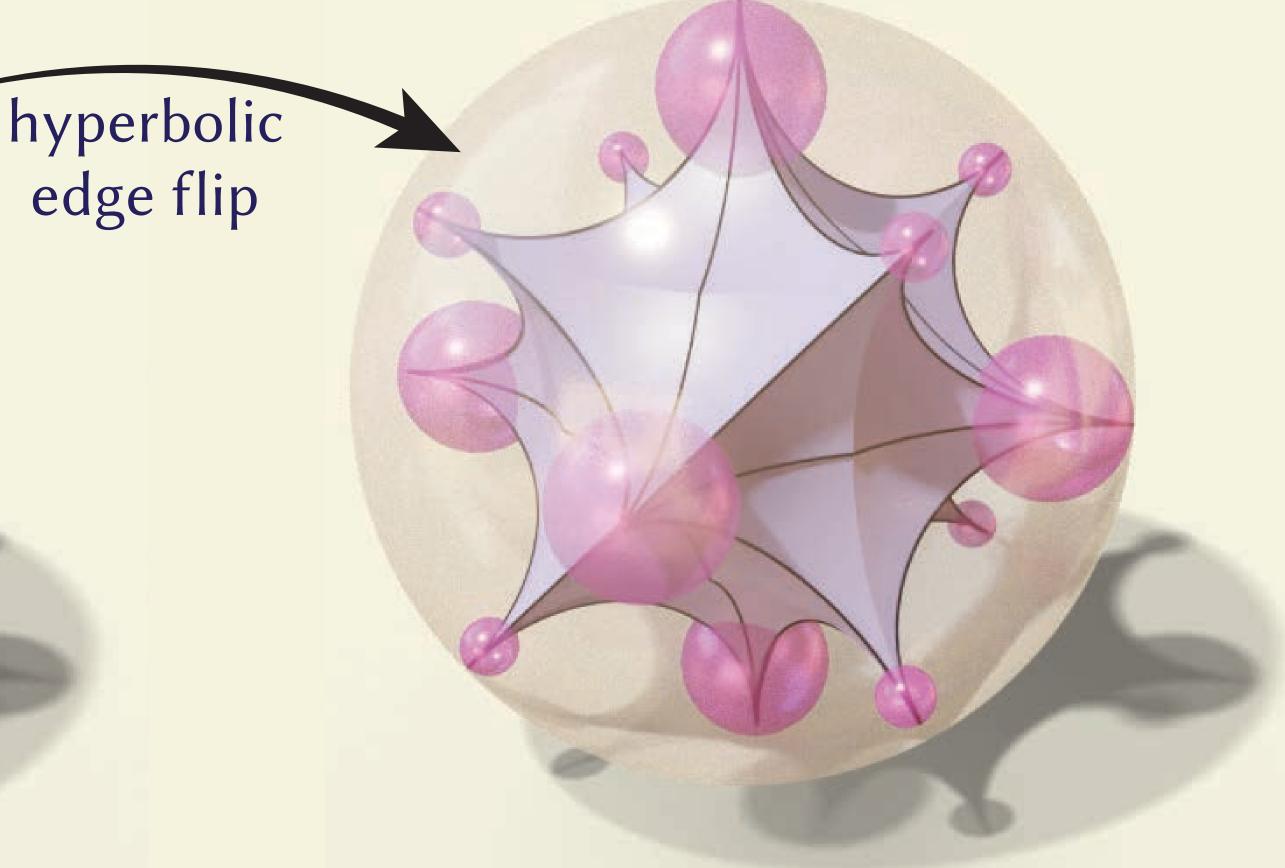
Changes preserving hyperbolic geometry

Intrinsic triangulations of hyperbolic polyhedra



Parameterization

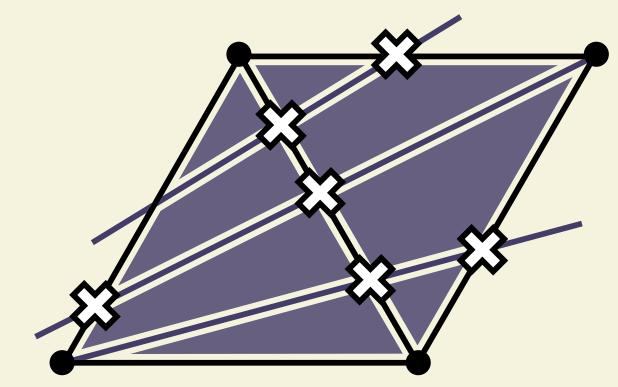
similar to ordinary intrinsic triangulations

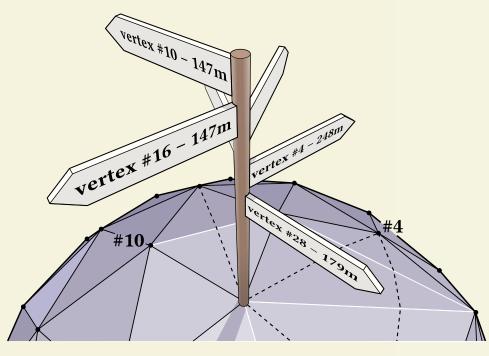


100

Data structures for hyperbolic intrinsic triangulations

• Existing data structures naturally generalize

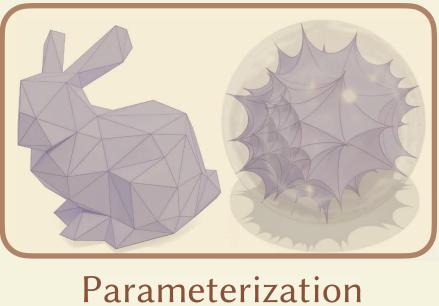




[Fisher, Springborn, Bobenko & Schröder 2006]

prohibitively complex

[Sharp, Soliman & Crane 2019]

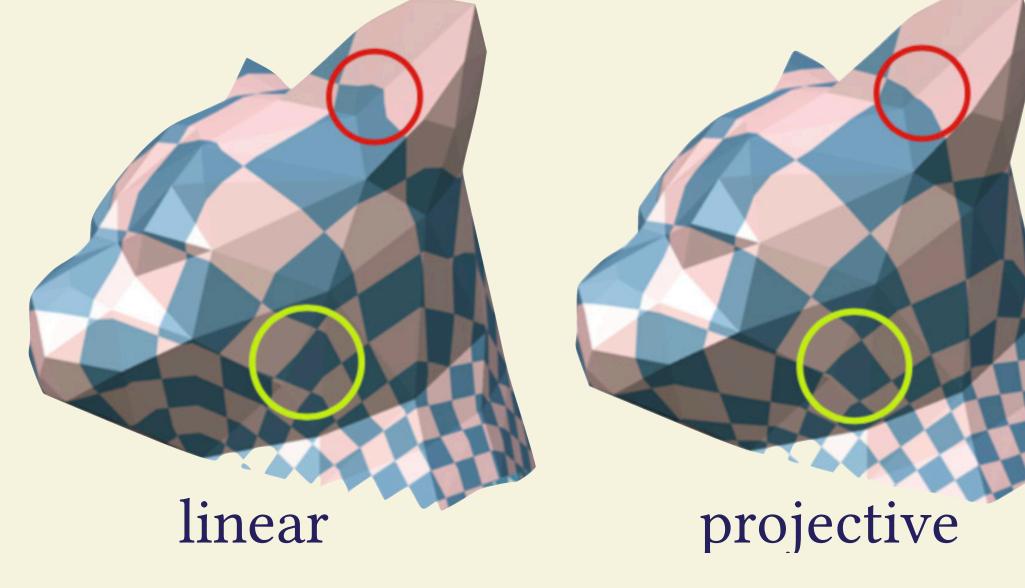


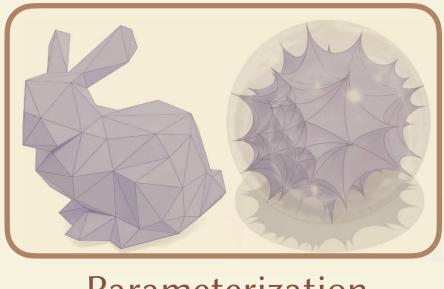
integer coordinates [Ours]

Projective interpolation

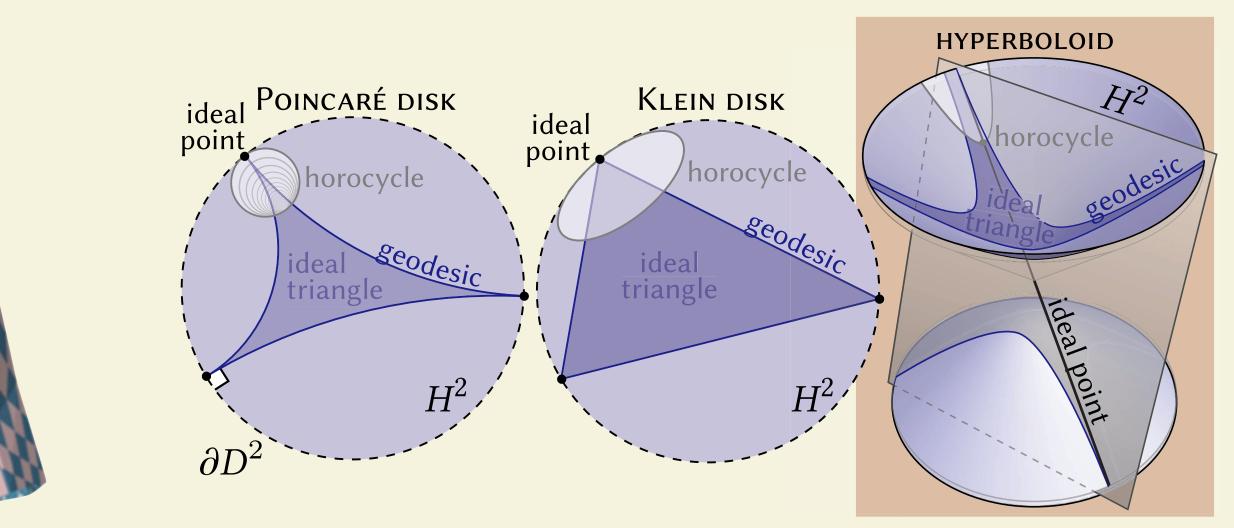
- [Springborn, Schröder & Pinkall 2008]: projective interpolation
 - Hyperbolic isometry
- [Ours]: novel projective interpolation using the hyperboloid model

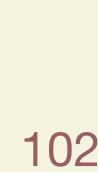
Pinkall 2008] pringborn, Image: Schröder



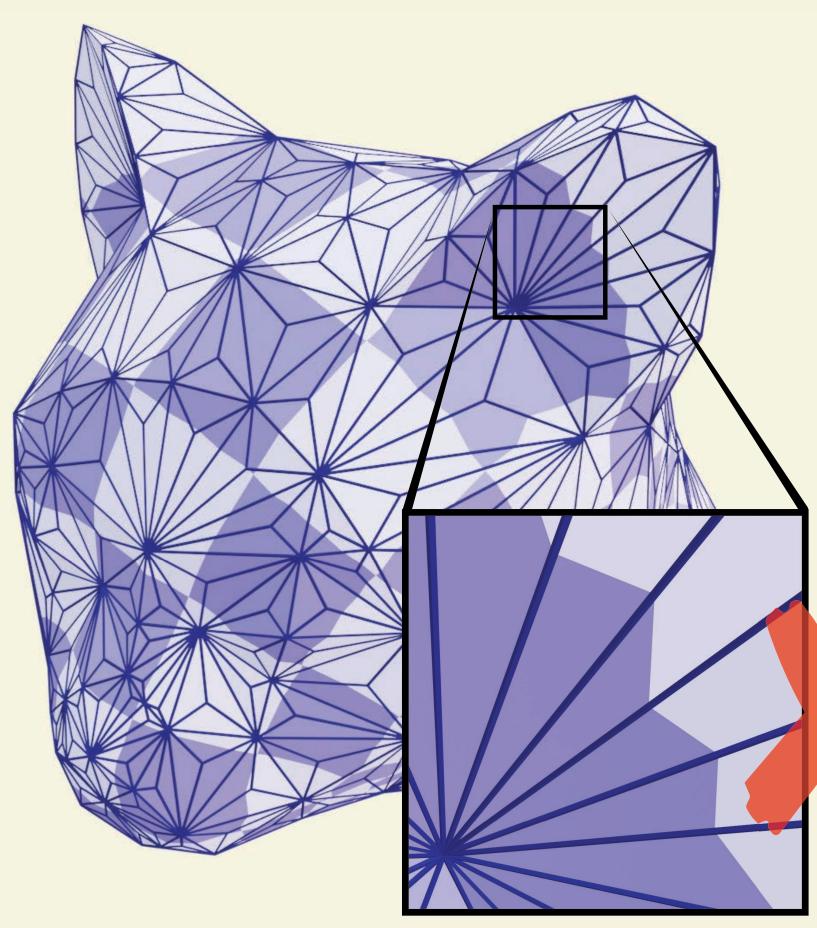


Parameterization

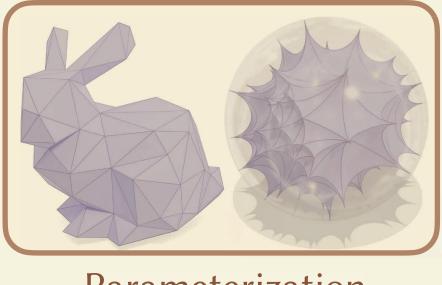




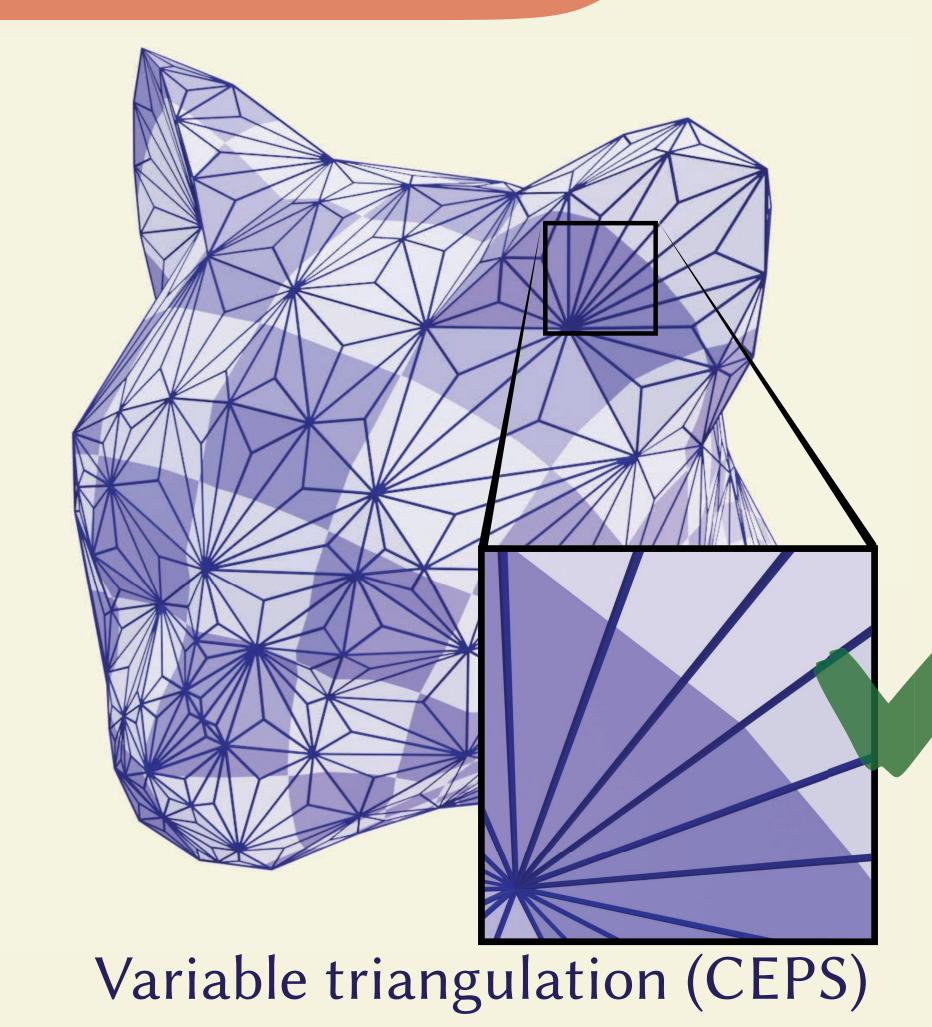
Variable triangulation > fixed triangulation



Fixed triangulation (CETM)



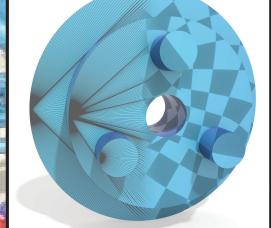
Parameterization



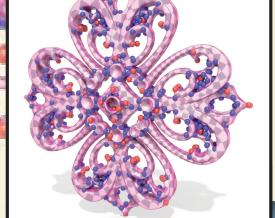
Validation

100% success

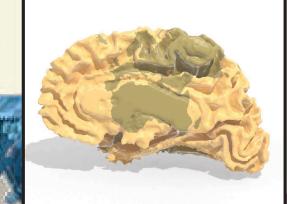
100% success



32,744 low-quality meshes [Zhou+ 2016]



114 difficult cone configurations [Myles+ 2014]

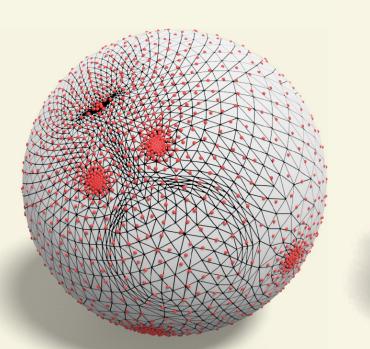


265 spherical parameterization problems [Yeo+ 2009; Boyer+ 2011]

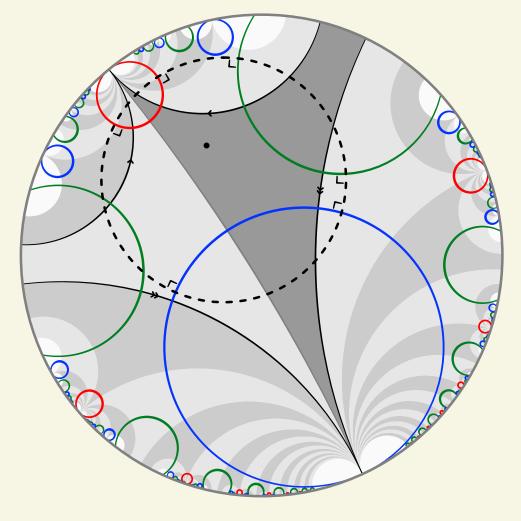
Uptake

useful to people in a variety of areas

3D printing [Lenihan *et al.* 2023]

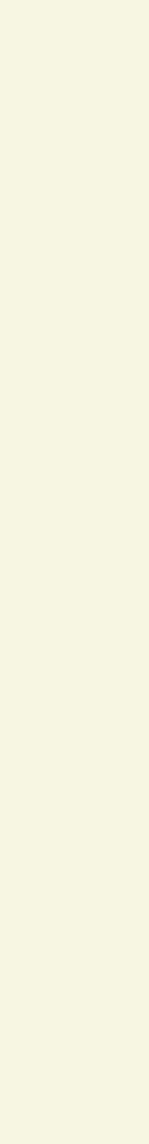


optimal transport [Genest *et al.* 2024]

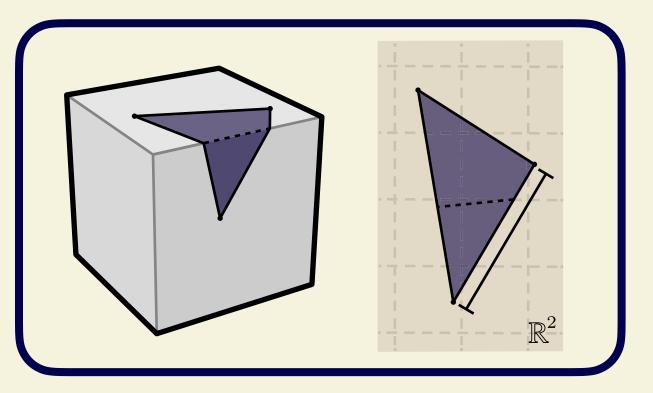


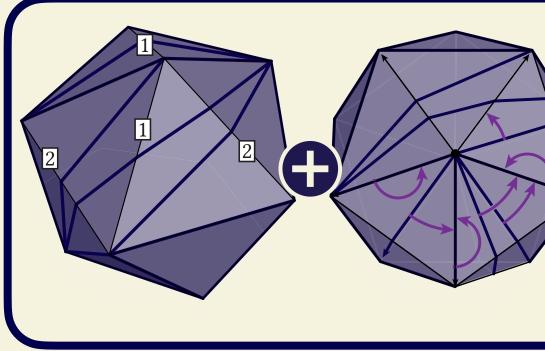
geometric topology [Bobenko & Lutz 2023]

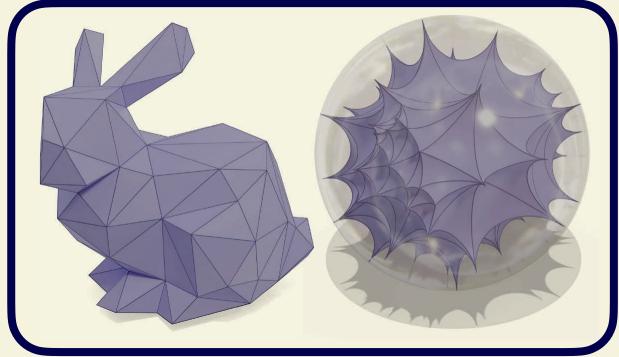
> generative models (ongoing)



Tanks for **Istening**

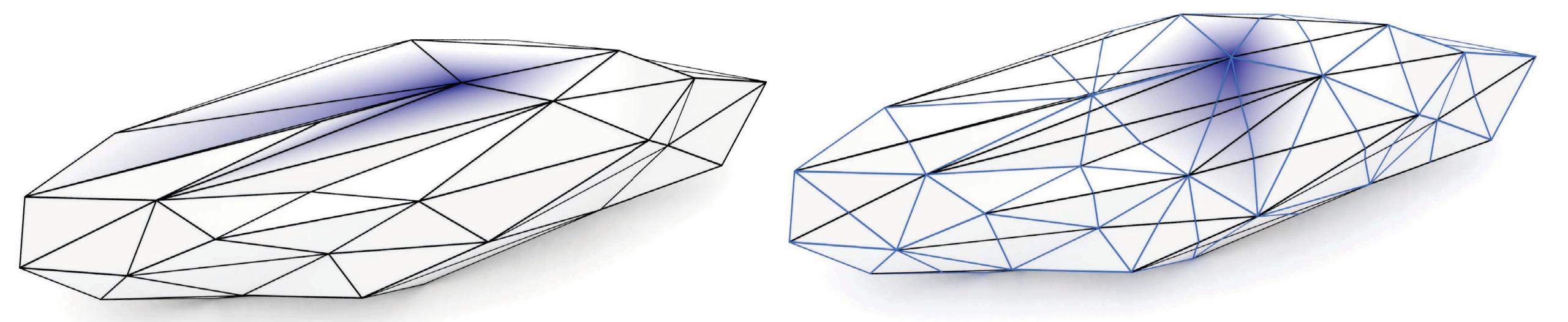






Supplemental Slides

Bad basis functions

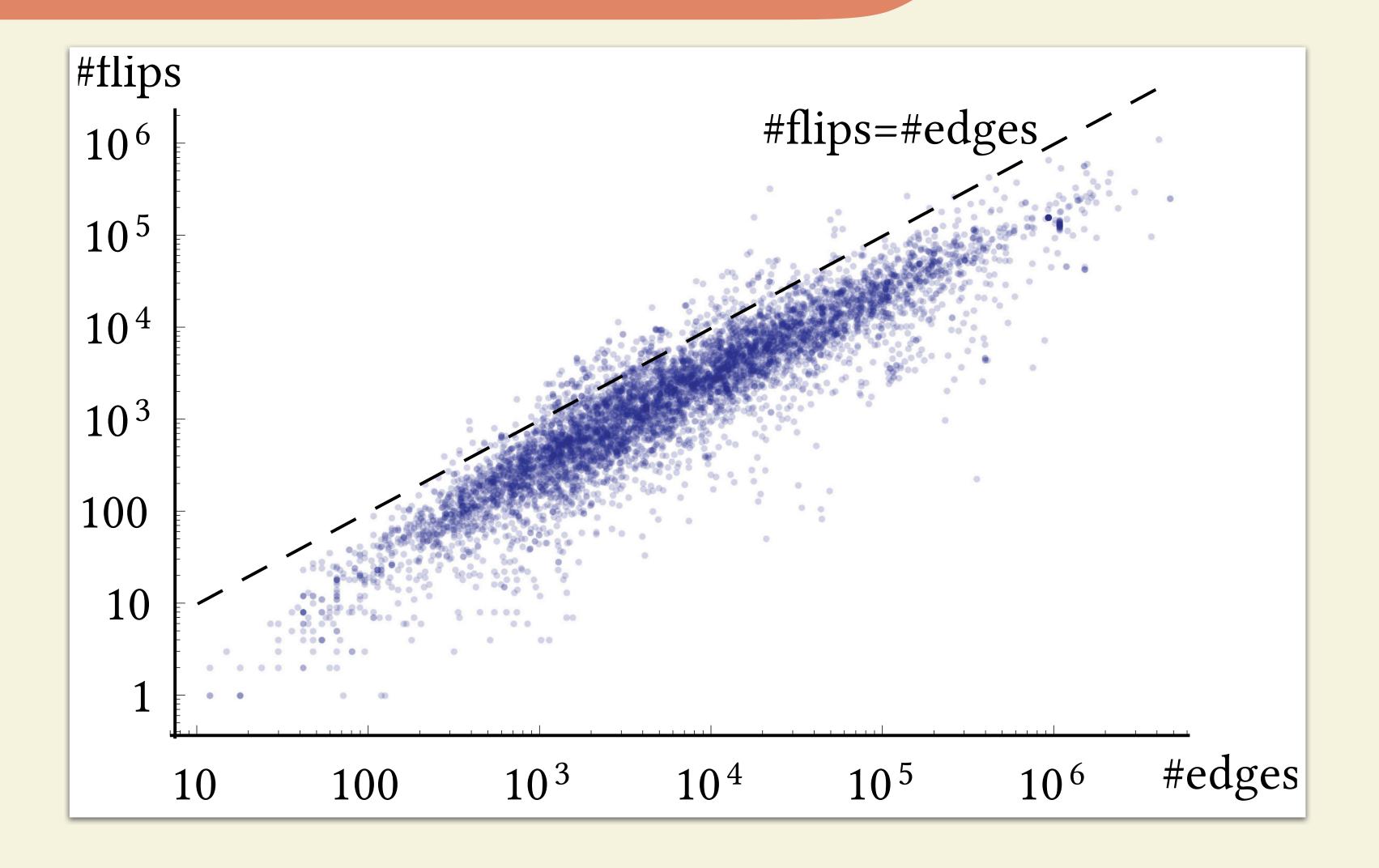


Input basis function

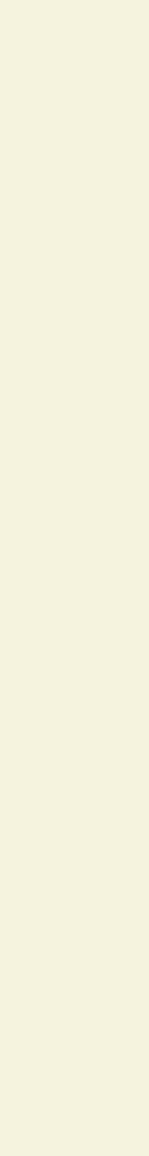
[Sharp, Soliman & Crane 2019]

Intrinsic basis function

Delaunay flip complexity



[Sharp, Soliman & Crane 2019]



Units for transport cost

integrated curvature is dimensionless (angle => units of radians)

Easy resolution: measure mass fraction rather than mass

e.g. fraction of total area or curvature present at a vertex

then everything is unitless

coarsening via curvature transport cost what units make sense here?

area has units of area

coarsening via blended cost

coarsening via area transport cost

Exact isometric embeddings

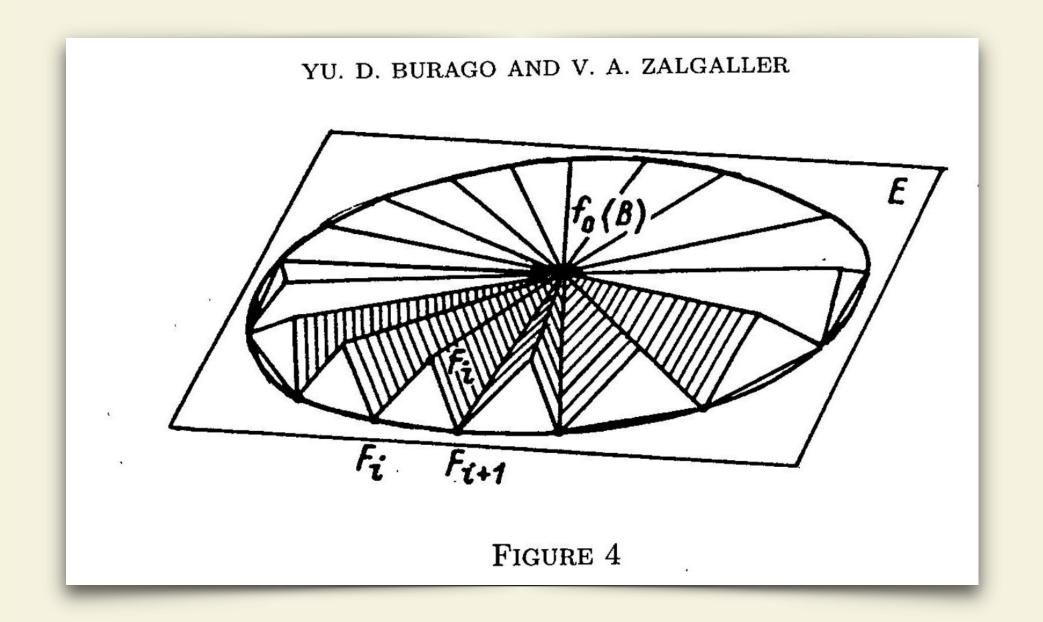
(intrinsically) convex polyhedra

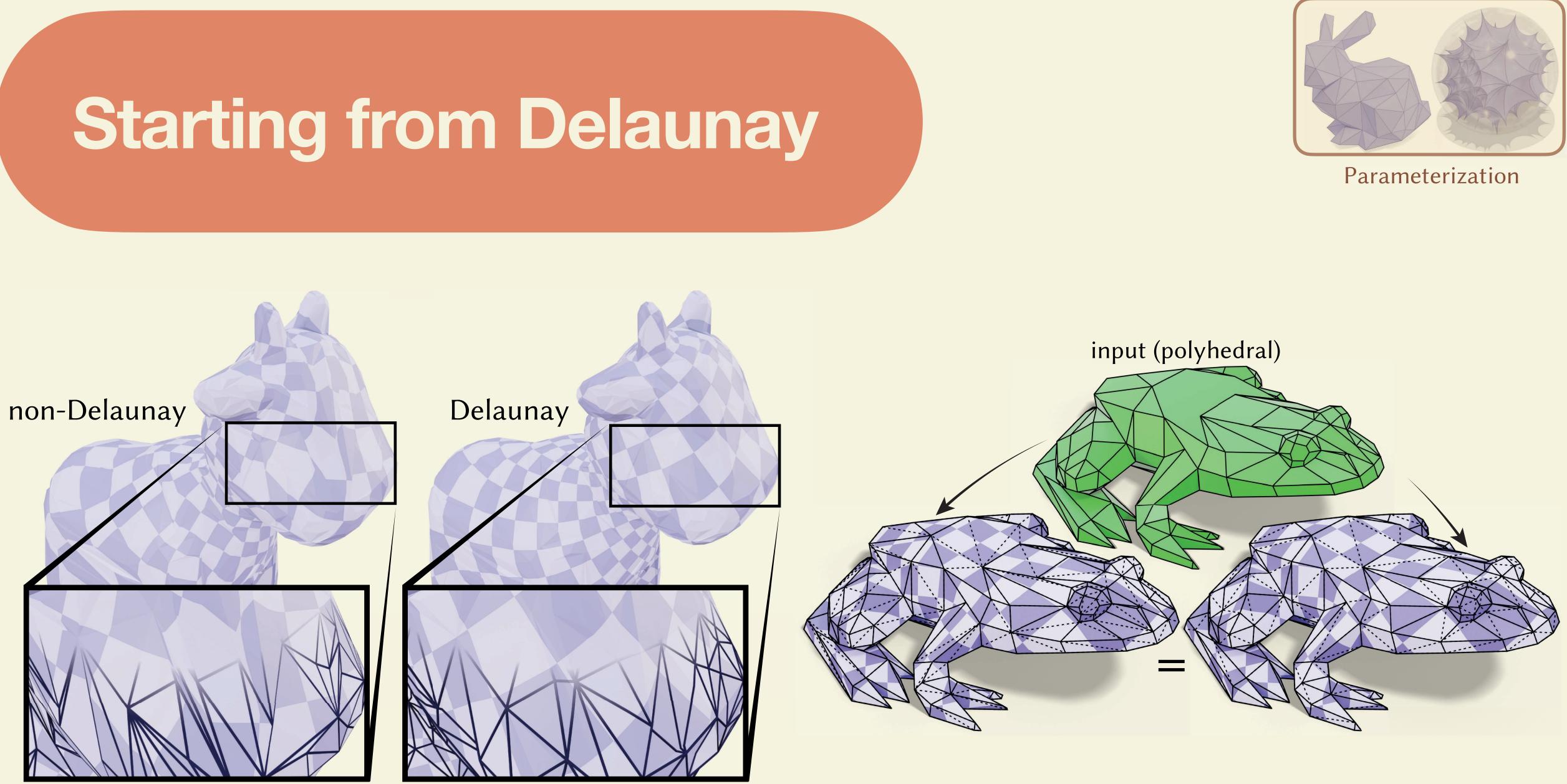
unique convex embedding into \mathbb{R}^3 [Alexandrov 1942]

(may need to flip edges)

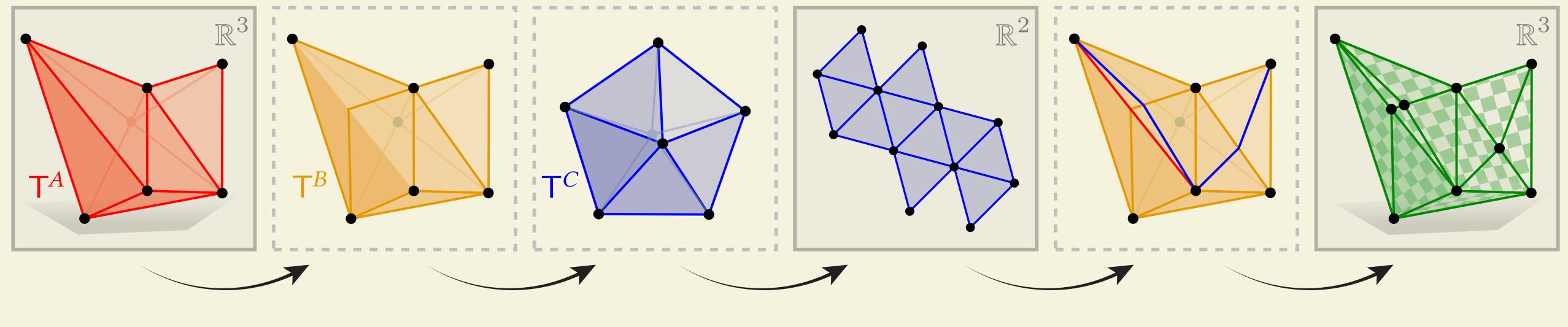
constructive proof/algorithm [Bobenko & Izmestiev 2008]

general polyhedra many embeddings into \mathbb{R}^3 [Burago & Zalgaller 1960, 1995] (may need to subdivide mesh many times)



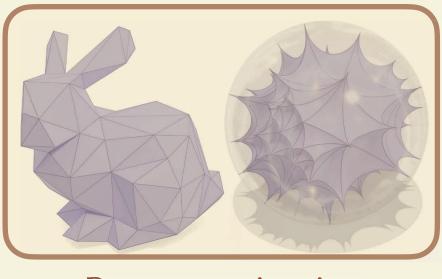


Final algorithm



flip to (Euclidean) Delaunay

solve for discrete conformal map

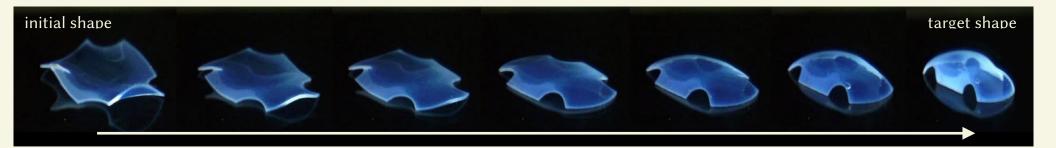


Parameterization

lay out in plane

extract correspondence interpolate via hyperboloid

Applications of parameterization



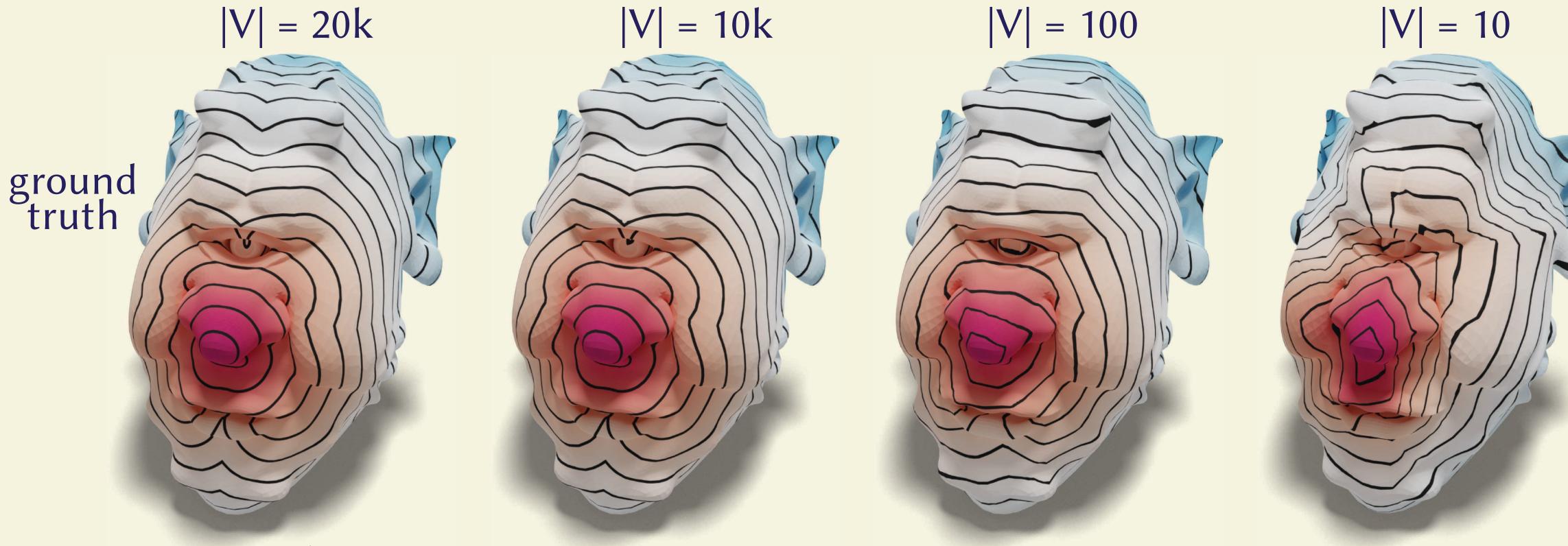
[Nojoomi et al. 2021]

[Konaković et al. 2016]

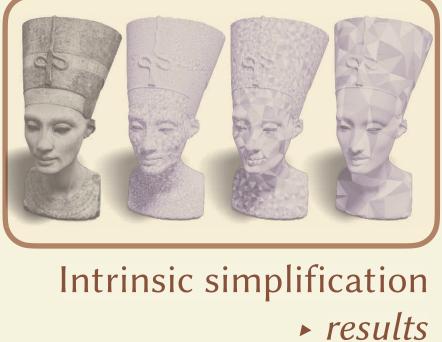
Fabrication

[Konaković-Luković et al. 2018]

Speedup vs error in geodesic distance



speedup/error: 3x / 0.0002%



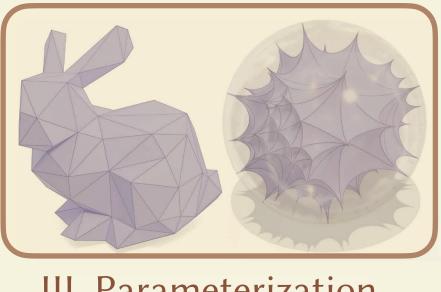
840x / 0.2%

4880x / 1.5%

Interpolation in the hyperboloid model

 $\tilde{\chi}$

fixed triangulation

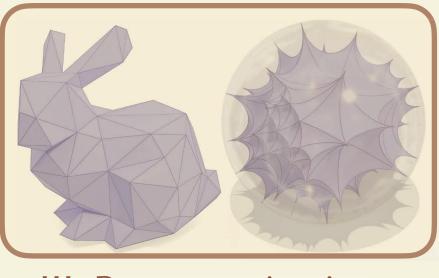


III. Parameterization

Interpolation in the hyperboloid model

 \tilde{x}

fixed triangulation



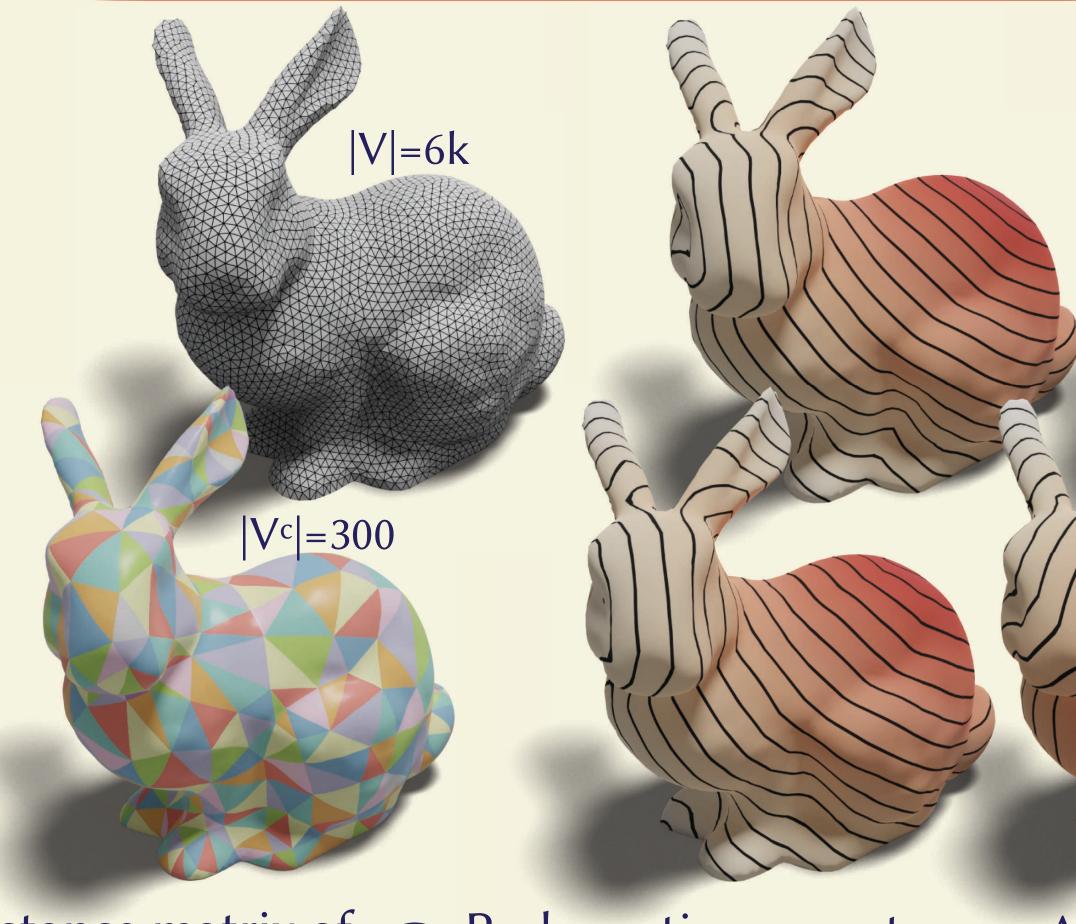
III. Parameterization

variable triangulation

 ${\mathcal X}$

 ${\mathcal X}$

Low rank all-pairs distance matrix approximation



Distance matrix of simplified mesh $P: \mathbb{R}^{|V^c|} \to \mathbb{R}^{|V|}$

All pairs distance matrix $D \in \mathbb{R}^{|V| \times |V|}$. . . 1650x faster 1.4% relative . . . error

• Approximate distance matrix $\hat{D} = P\tilde{D}P^{\top}$

▶ results

Application: Shape Correspondence

• Uniformization can been used to find correspondences between shapes

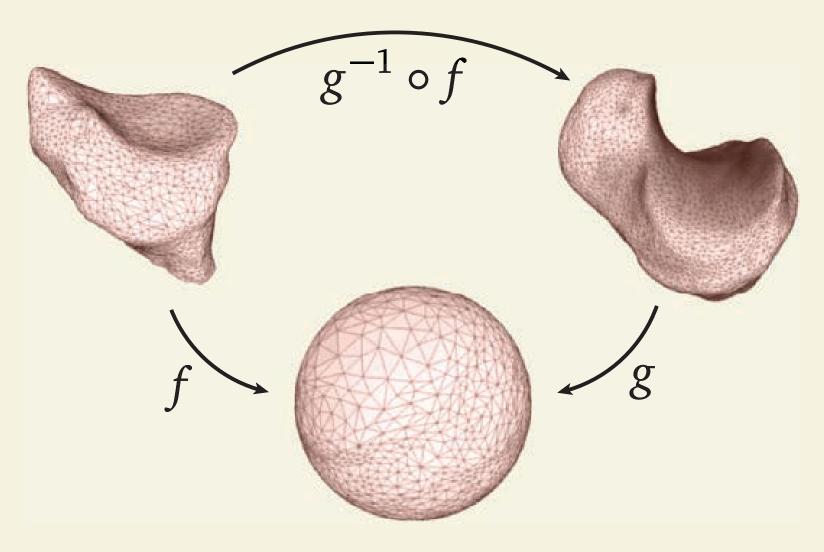
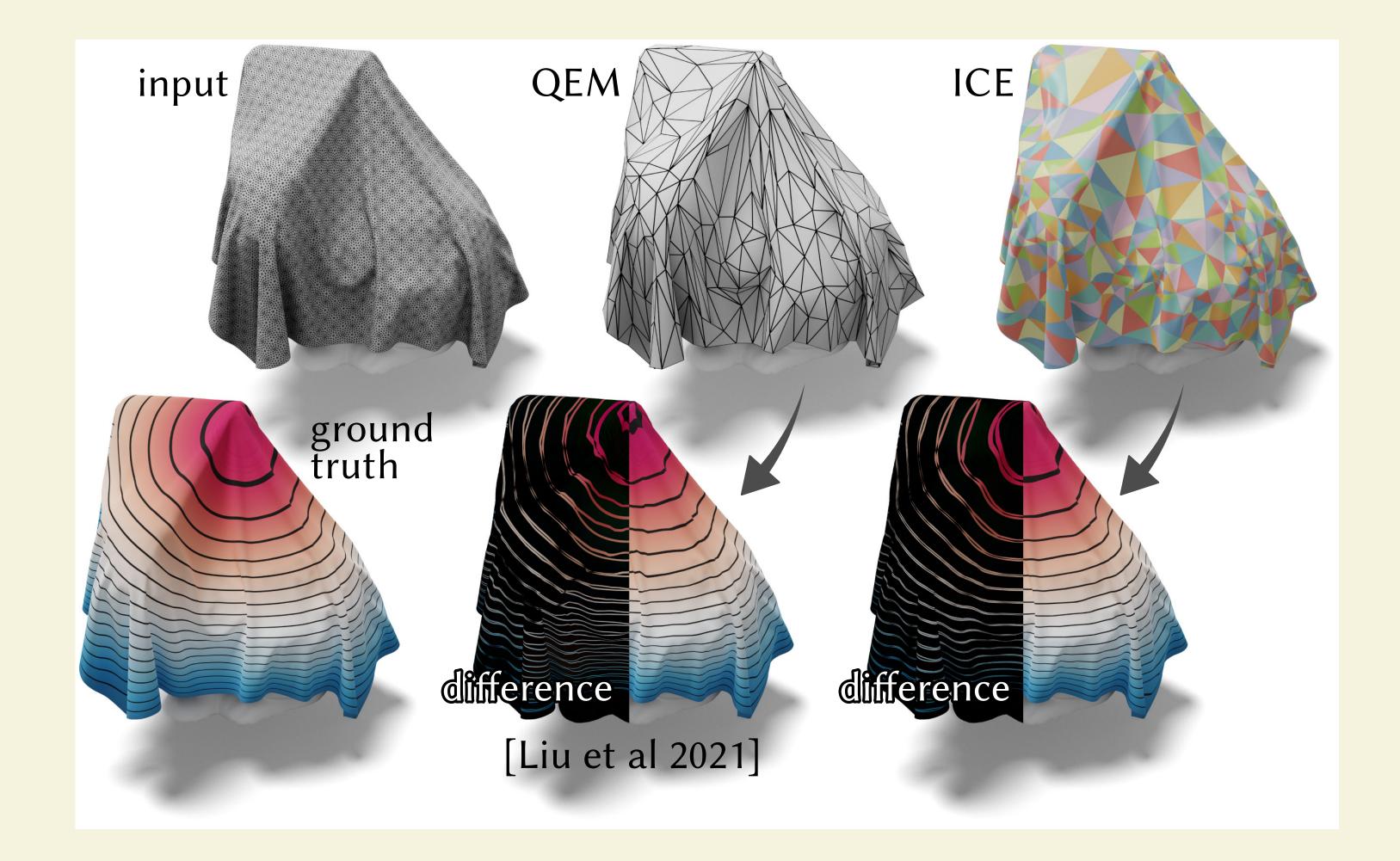


Image: [Koehl & Hasse 2015]

Image: [Schmidt, Campen, Born & Kobbelt 2020]

Solution accuracy



Distortion

18

|V| = 56k

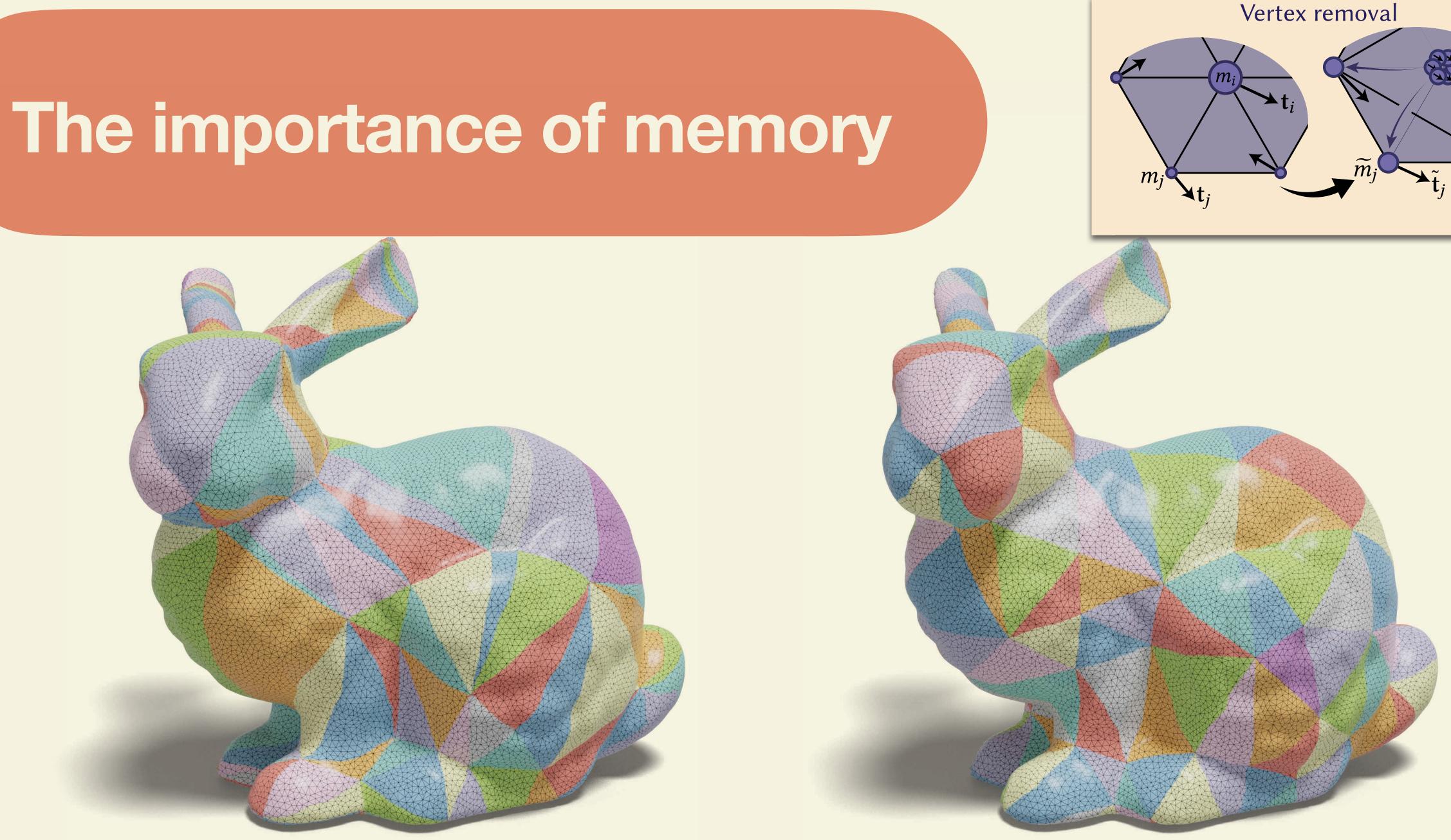
 $|V^{c}| = 200$

anisotropic distortion i.e. quasiconformal dilatation (mean 1.115)

III. Intrinsic simplification

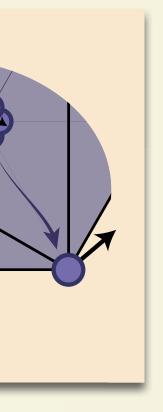
area distortion (mean 8.1%)

► results

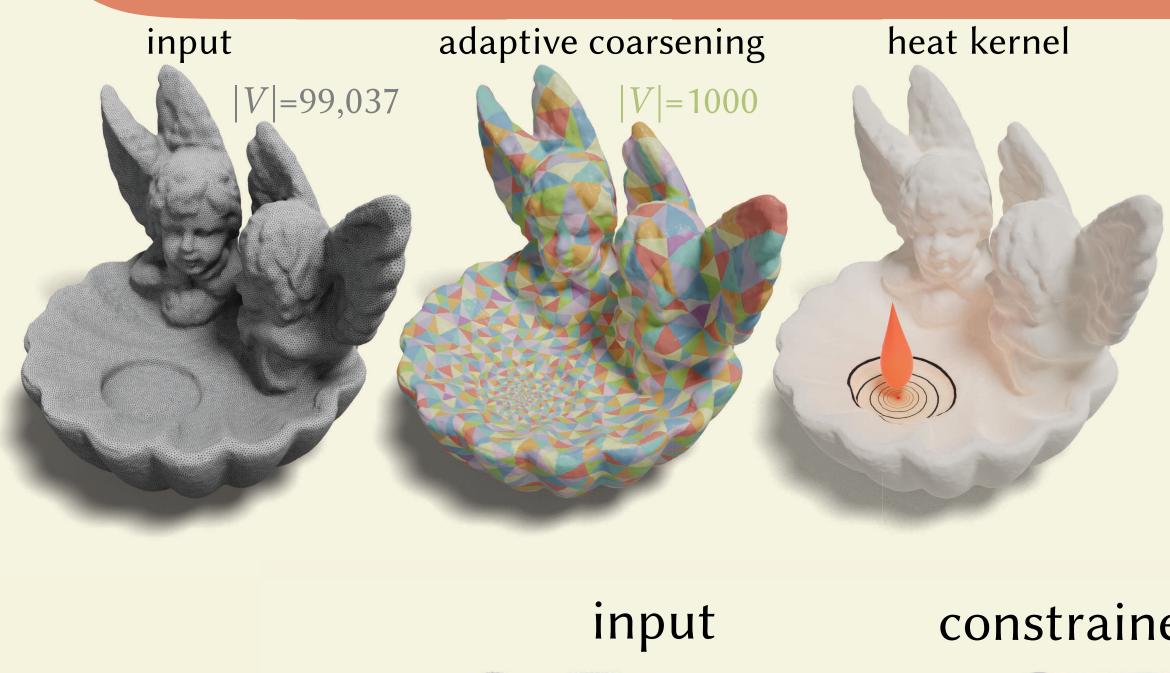


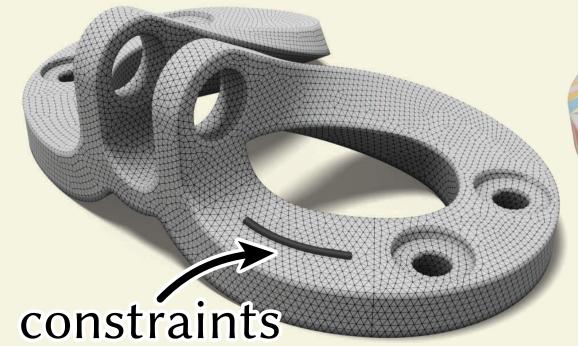
Memoryless transport cost

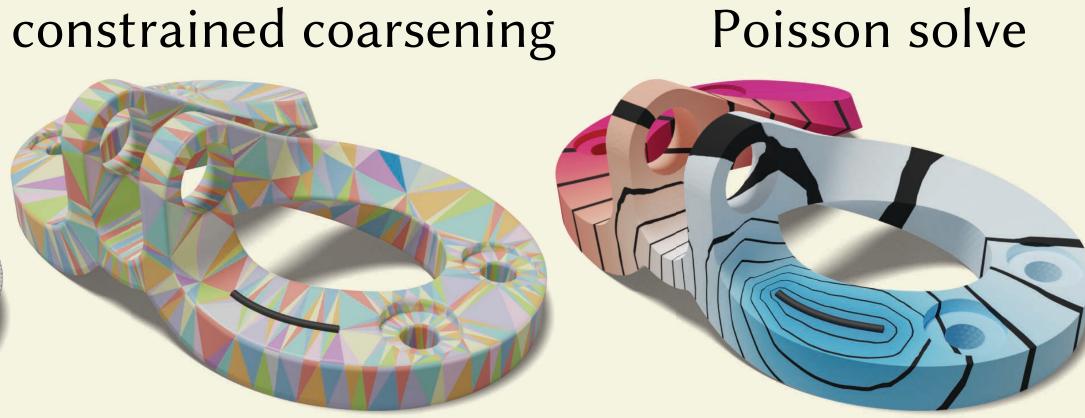
Full transport cost



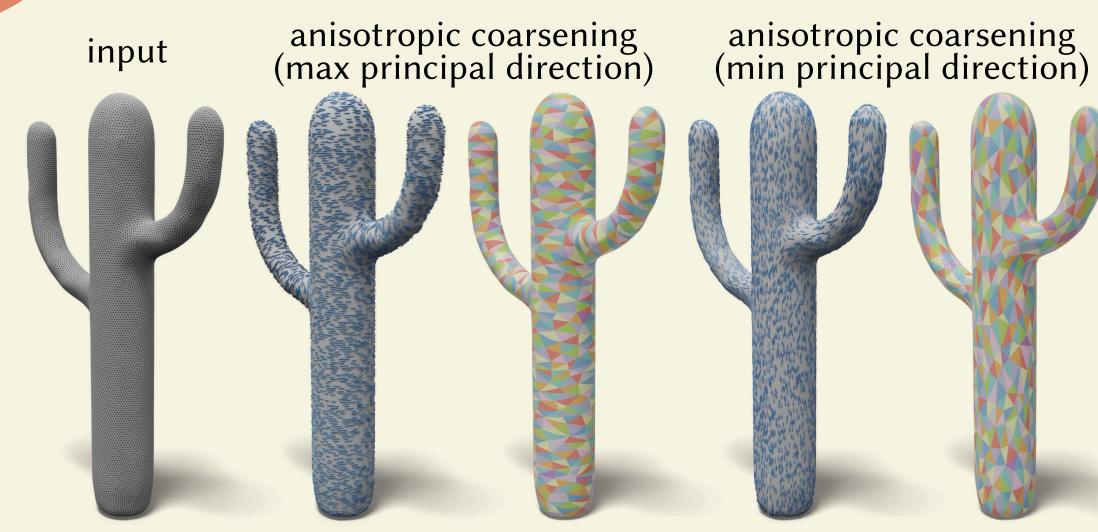
Adaptive simplification







III. Intrinsic simplification



Geodesic Voronoi diagrams

|N| = 63k

ground truth

7207.4 ms

 $|N^{c}| = 500$

result on simplified surface

3.2 ms (2252x faster)

only 1% vertices misclassified

Intrinsic Delaunay refinement

input mesh

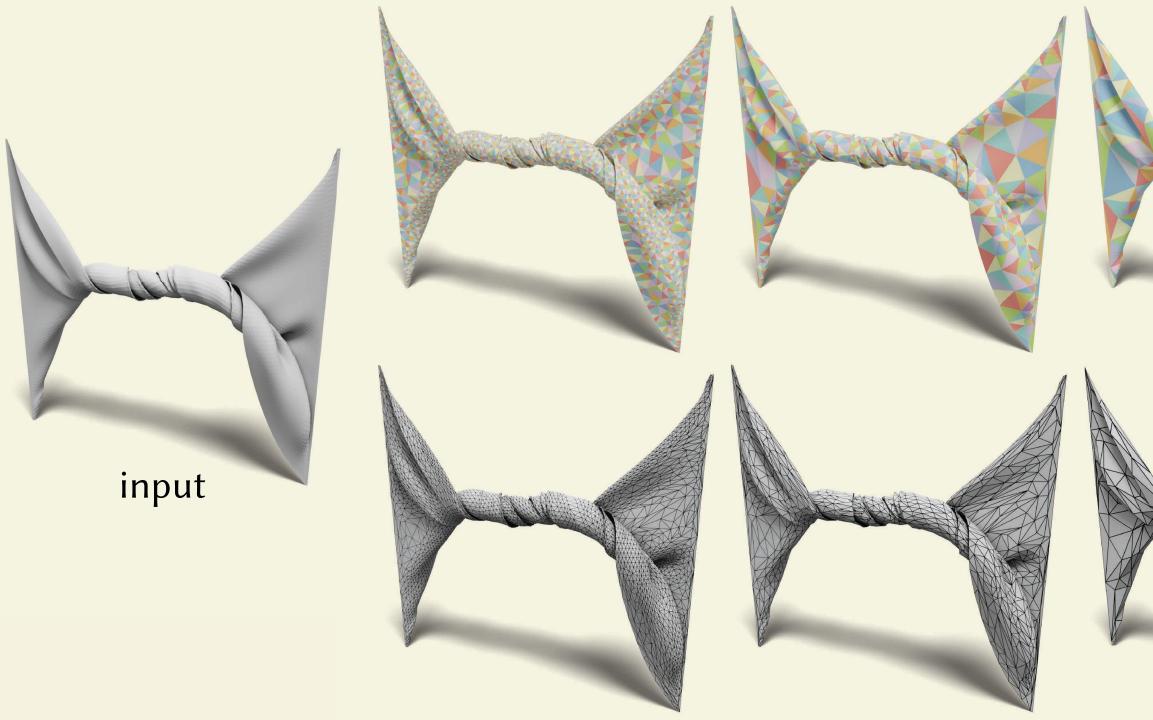
computation on input mesh

computation on intrinsic Delaunay triangulation

computation on intrinsic Delaunay refinement

Near-developable surfaces

intrinsic simplification intrinsic view

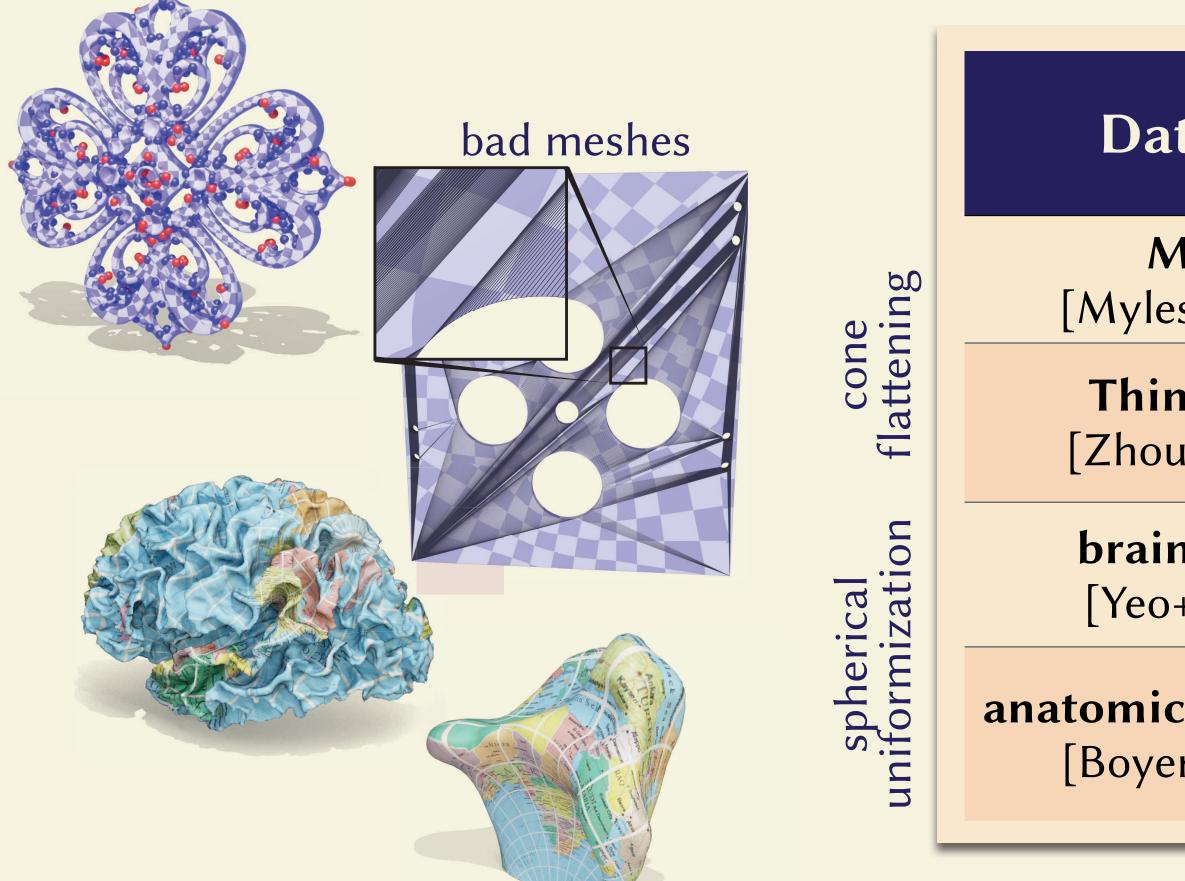


extrinsic simplification

III. Intrinsic simplification

Challenging datasets

difficult cones

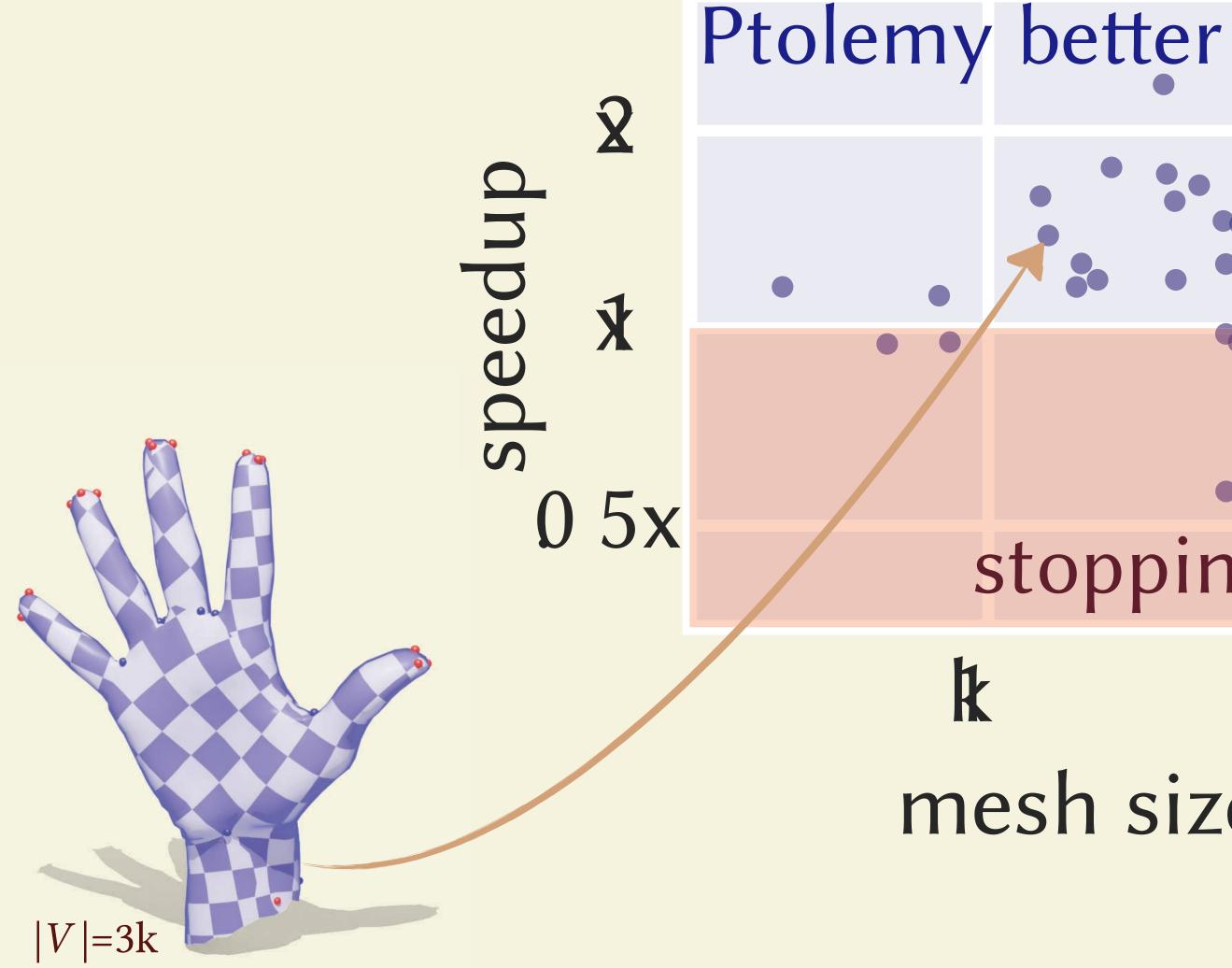


* connected components of models from Thingi10k

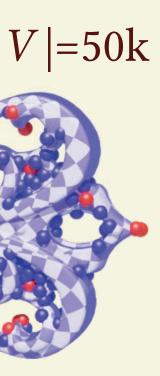
taset	# Models	Success rate	Average tim
APZ es+ 2014]	114	100%	8s
ngi10k u+ 2016]	32,744*	97.7%	57s†
n scans + 2009]	78	100%	493s
cal surfaces er+ 2011]	187	100%	15s

[†] average time on models with > 1000 vertices

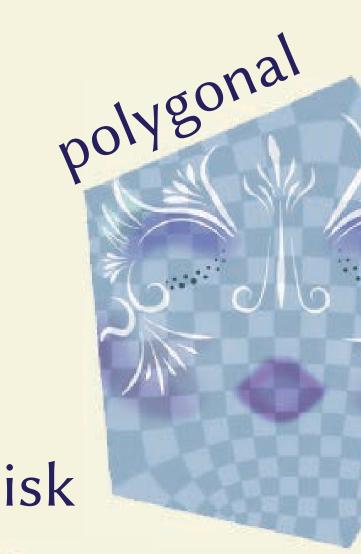
Ptolemy flips improve performance

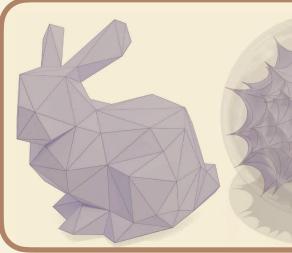


stopping to flip betterkkkkkkk



Boundary conditions





IV. Discrete uniformization

convex

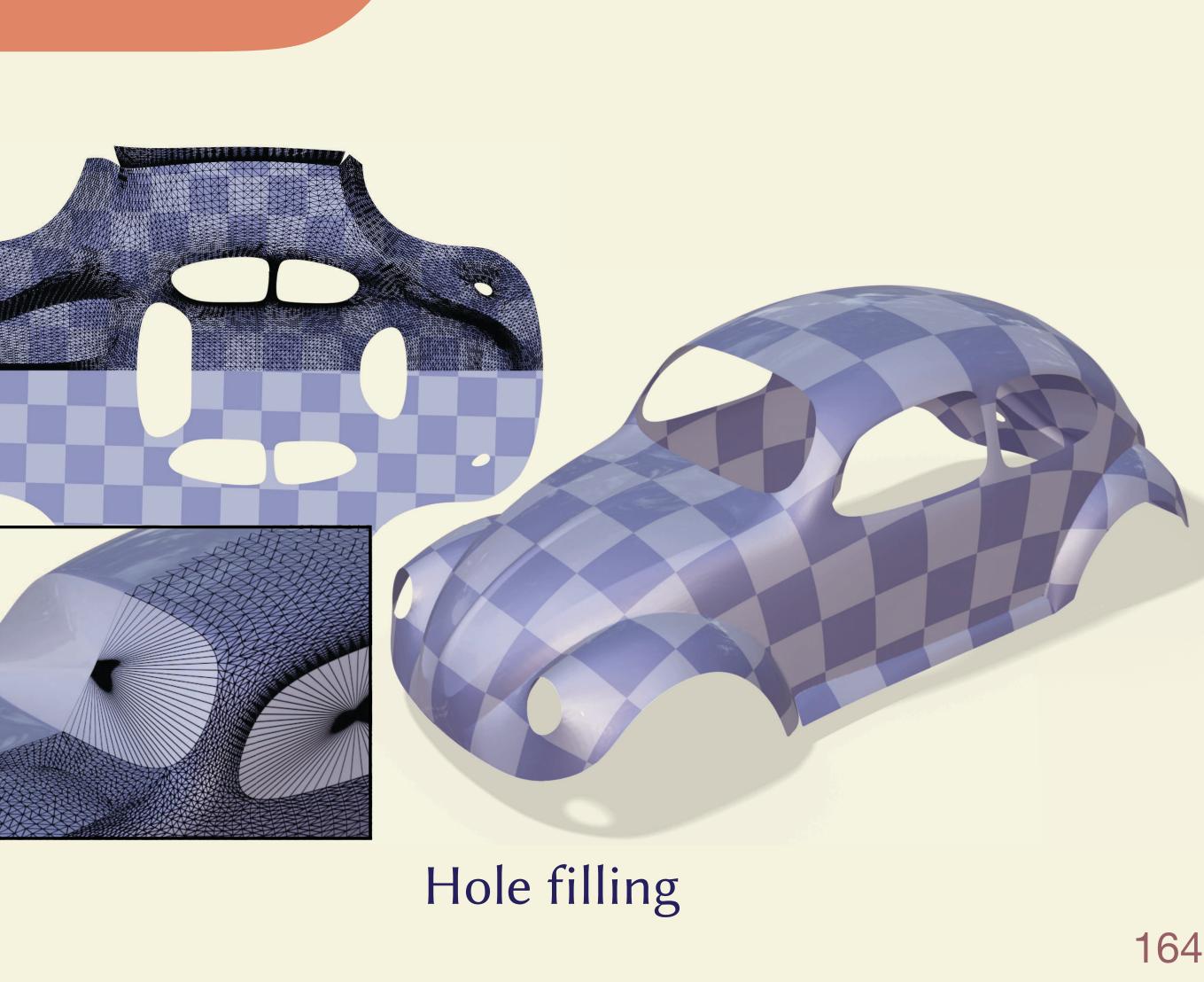
minimal area distortion

orthogonal

scale control

Multiply-connected domains

No hole filling

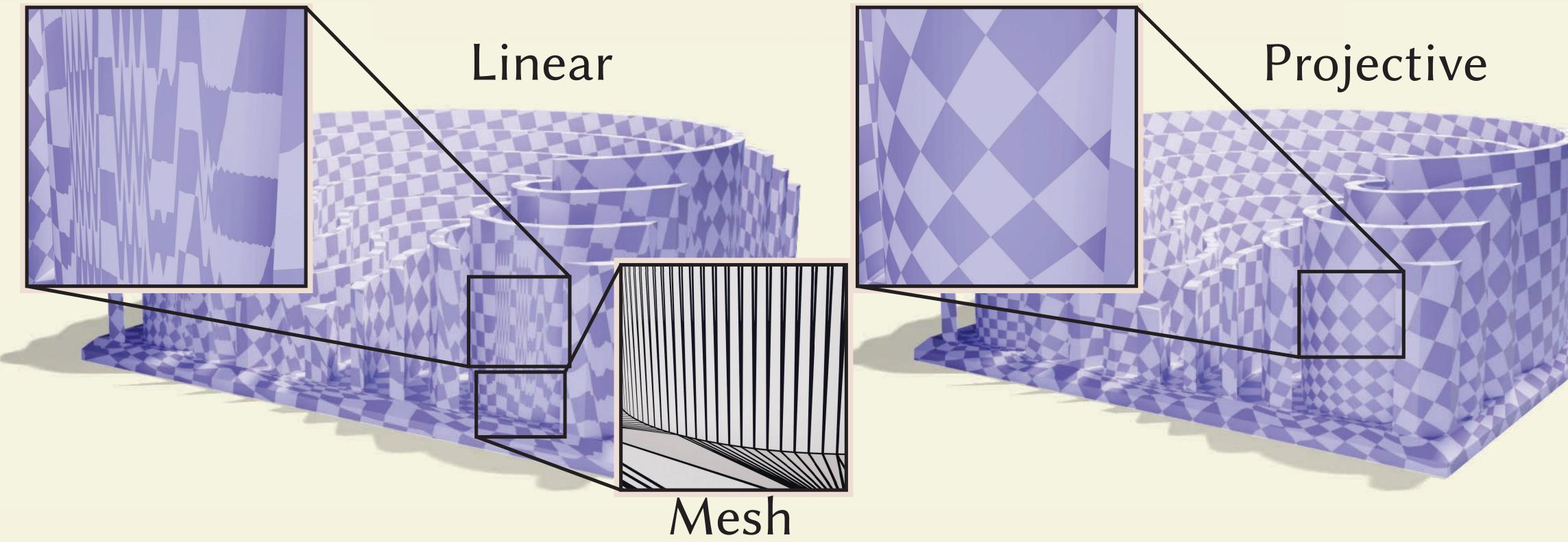


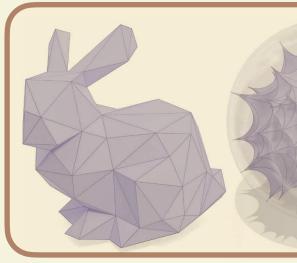
Projective interpolation improves quality

500096

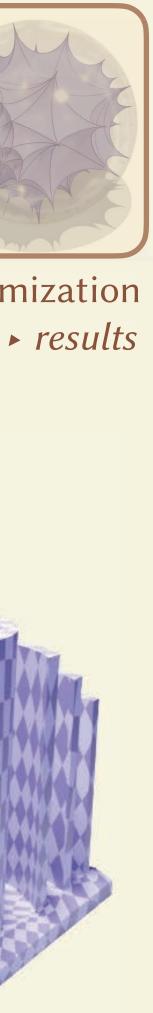
 \square

Thing

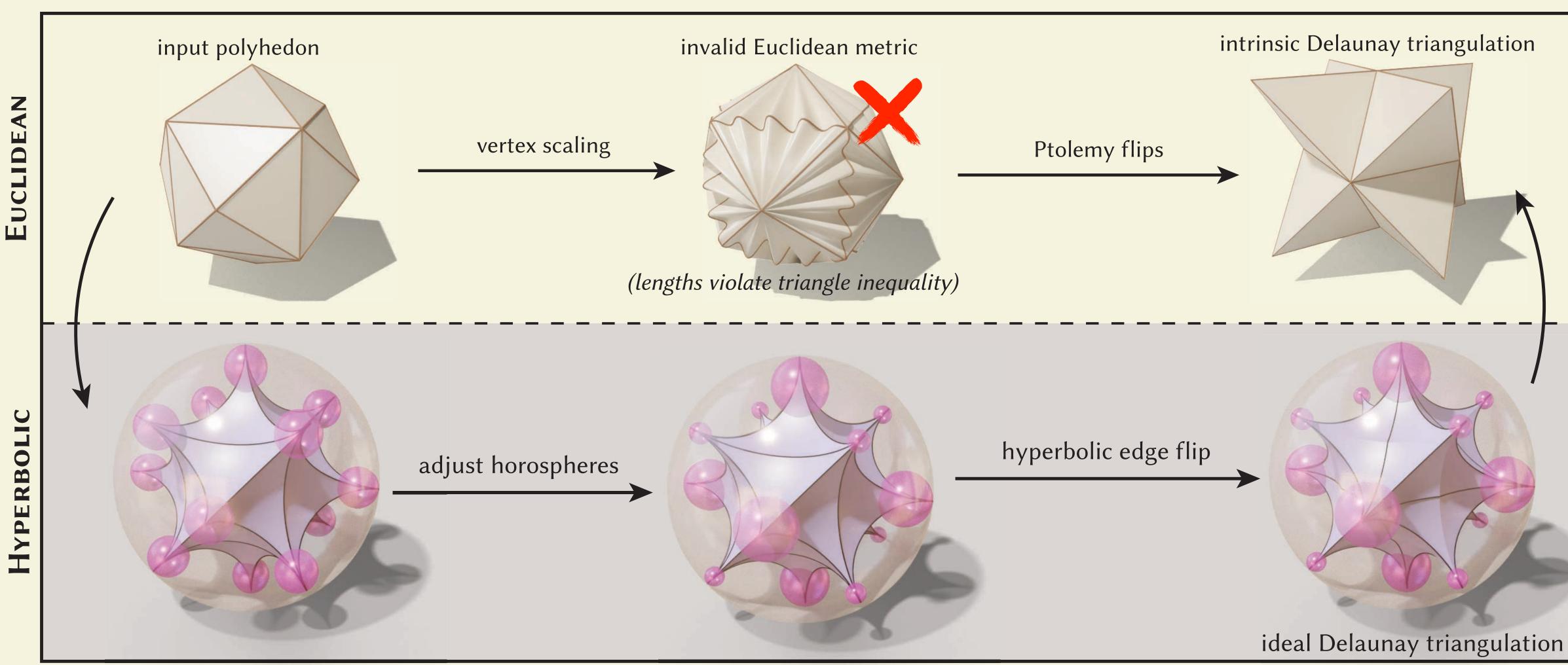




IV. Discrete uniformization



Discrete conformal equivalence across triangulations



Optimization with Ptolemy Flips

• Express energy and derivatives in terms of edge lengths [Springborn 2019]

Hand to any optimization algorithm

