
Integer Coordinates for Intrinsic Geometry Processing

MARK GILLESPIE, NICHOLAS SHARP, and KEENAN CRANE, Carnegie Mellon University

This paper describes a numerically robust data structure for encoding in-

trinsic triangulations of polyhedral surfaces. Many applications demand a

correspondence between the intrinsic triangulation and the input surface,

but existing data structures either rely on floating point values to encode

correspondence, or do not support remeshing operations beyond basic edge

flips. We instead provide an integer-based data structure that guarantees

valid correspondence, even for meshes with near-degenerate elements. Our

starting point is the framework of normal coordinates from geometric topol-

ogy, which we extend to the broader set of operations needed for mesh

processing (vertex insertion, edge splits, etc.). The resulting data structure

can be used as a drop-in replacement for earlier schemes, automatically

improving reliability across a wide variety of applications. As a stress test,

we successfully compute an intrinsic Delaunay refinement and associated

subdivision for all manifold meshes in the Thingi10k dataset. In turn, we

can compute reliable and highly accurate solutions to partial differential

equations even on extremely low-quality meshes.

CCS Concepts: • Mathematics of computing→Mesh generation.

Additional Key Words and Phrases: remeshing, intrinsic triangulation, De-

launay triangulation, discrete differential geometry

ACM Reference Format:
Mark Gillespie, Nicholas Sharp, and Keenan Crane. 2021. Integer Coordinates

for Intrinsic Geometry Processing. ACM Trans. Graph. 40, 6, Article 252

(December 2021), 13 pages. https://doi.org/10.1145/3478513.3480522

1 INTRODUCTION AND RELATED WORK

Polyhedral surfaces play a central role in graphics, geometry pro-

cessing, scientific computing, and computer vision, but meshes from

these domains are often not directly suitable for computation. For

instance, a mesh that is perfectly good for visualization may not

be suitable for solving partial differential equations (PDEs), which

are a basic component of many modern geometric algorithms. Sig-

nificant work hence focuses on algorithms that are robust to mesh

quality [Zhou et al. 2016; Schneider et al. 2018; Sellán et al. 2019;

Sawhney and Crane 2020; Jiang et al. 2020], including extremely ro-

bust remeshing [Hu et al. 2018, 2020]. However, current best-in-class

remeshing techniques are volumetric in nature, making them less

than ideal for surface problems: for instance, they do not preserve

boundaries or self-intersections, and are orders of magnitude more

expensive (seconds to minutes) than traditional 2D remeshing (on

the order of milliseconds). More fundamentally, standard extrinsic

approaches to remeshing based on vertex positions in Rn must ne-

gotiate a trade-off between mesh size, the quality of mesh elements,

and geometric approximation of the input domain.

Authors’ address: Mark Gillespie; Nicholas Sharp; Keenan Crane, Carnegie Mellon

University, 5000 Forbes Ave, Pittsburgh, PA, 15213.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

© 2021 Copyright held by the owner/author(s).

0730-0301/2021/12-ART252

https://doi.org/10.1145/3478513.3480522

3
1

1

0

0

0 0
0

1

Fig. 1. Intrinsic triangulations enable one to compute with a high-quality

triangulation even on a low-quality input mesh. We introduce an integer-

based intrinsic triangulation data structure that is dramatically more robust

than past alternatives.

Intrinsic triangulations provide a framework for surface mesh

processing with computational cost and behavior similar to ordi-

nary 2D meshing. The basic idea is to trace out a secondary mesh

along straight (i.e., geodesic) paths that triangulate the same vertex

set—opening up a dramatically larger space of triangulations for

computation. Though intrinsic triangles may appear bent, they are

fully described by just three ordinary edge lengths, since they can

be unfolded into the plane without any distortion (Figure 2). Hence,

algorithms designed for ordinary triangle meshes can be run on

the intrinsic mesh with little to no modification. Sharp et al. [2021]

provides an in-depth introduction, including a detailed discussion

of practical applications.

This larger space of triangulations also makes it possible to im-

prove element shape without introducing geometric approximation

error (Figure 1). Encapsulating thismachinery in a standard interface

provides robustness as a subroutine: rather than make algorithms

more robust one at a time, we can transform low-quality input into a

high-quality intrinsic mesh, execute a “non-robust” algorithm, then

read back the results in a variety of ways.

However, to make this approach truly reliable one must develop

numerically robust data structures for encoding the correspondence

between the input mesh T 0
and an intrinsic triangulation T 1

traced

out over T 0
. The earliest example is the overlay mesh of Fisher et al.

[2006], which explicitly tracks the common subdivision obtained

by “slicing up” T 0
along the edges of T 1

. This approach guarantees

ACM Trans. Graph., Vol. 40, No. 6, Article 252. Publication date: December 2021.

https://doi.org/10.1145/3478513.3480522
https://doi.org/10.1145/3478513.3480522

252:2 • Gillespie, Sharp, and Crane

Fig. 2. Left: we triangulate the vertices of a polyhedral surface by edges

along geodesic paths (left). Right: since the three edge lengths of an intrinsic

triangle i jk satisfy the usual triangle inequalities, we can express quantities

like angles and areas via standard formulas from Euclidean geometry.

correct connectivity, but even basic operations like edge flips are

non-local and expensive to evaluate; further operations (such as

vertex insertion) were never described. Sharp et al. [2019a] encode

correspondence implicitly via signposts at vertices, which give the

direction and length of each outgoing intrinsic edge. A variety of lo-

cal operations are now cheap to evaluate, but the connectivity of the

common subdivision is no longer guaranteed to be correct since it is

encoded via inexact floating-point values. For instance, an intrinsic

edge ij traced from vertex i may fail to reach the neighborhood of

the other vertex j.

Integer-Based Encoding. Our data structure offers the best of both

worlds: an implicit encoding of correspondence that supports fast

local operations, but also guarantees correct connectivity. Since

we augment traditional integer-valued normal coordinates with

additional integer-based roundabouts à la Gillespie et al. [2021], we

refer to the overall encoding as integer coordinates. Like signposts,

integer coordinates support many operations beyond edge flips (Sec-

tion 3), but are dramatically more robust. A key example is intrinsic

Delaunay refinement (Section 4.2), which significantly improves

robustness for PDE-based geometry processing (Section 5)—but is

often useful only if one can reliably extract the common subdivision

over which the solution is interpolated (Section 6).

Our starting point is the concept of normal coordinates from

geometric topology
1
—the basic idea is to count how many times

each edge of a triangulation is crossed by a given curve (Figure 3,

left), as detailed in Section 2.3. As long as the curve is normal (i.e.,

does not enter and exit any face through the same edge), these

numbers alone are sufficient to recover the original curve, up to a

homotopy that does not pass through vertices. More generally, one

can consider a collection of curves—such as the edges of a second

triangulation (Figure 3, right). Normal coordinates were originally

developed to study surfaces in 3-manifolds [Kneser 1929; Haken

1961; Hass and Trnkova 2020], and appear throughout topology

(e.g., for encoding themapping class group [Farb and Margalit 2011]),

1
Not to be confused with geodesic normal coordinates from Riemannian geometry.

2

2

1
1

1

1

111
1

1
1

1

1

22

-1
0 0
0

2
3

1

1

1

Fig. 3. Left: normal coordinates count how many times a given curve crosses

each edge of a triangulation. Right: more generally, we can count the total

number of times each edge of one triangulation crosses any edge of another.

Remarkably, one integer per edge is sufficient to recover the geometry of

the intersections.

including significant work on algorithms [Bell 2015, 2018; Schaefer

et al. 2008]. In theoretical computer science, normal coordinates

are also viewed as a means of “compressing” curves, since the total

bits required to store a long winding curve can be exponentially

smaller than storing explicit segments along the curve [Erickson

and Nayyeri 2013]. However, we must augment classical normal

coordinates in several ways in order to make them suitable for

geometry processing.

One challenge is that past literature rarely considers operations

beyond edge flips, and even then only for closed loops (e.g. [Schaefer

et al. 2002, Section 5.4]). For triangulations, it is essential to handle

open curves terminating at vertices. A second issue is that normal

coordinates alone are not enough to uniquely identify traced curves

with the logical edges of a mesh. Gillespie et al. [2021, Section 5.2]

introduce so-called roundabouts to address this issue, but again con-

sider only edge flips. Finally, whereas normal coordinates typically

encode topological curves (or perhaps hyperbolic geodesics [Mosher

1988]), we use them to encode a geodesic triangulation of a Euclidean

polyhedron. This distinction is important since not all normal co-

ordinates describe such a triangulation; this specialization in turn

helps to establish procedures not yet seen.

Contributions. Overall, we make the following contributions:

• We describe how normal coordinates (plus roundabouts) can

be used as a general representation for intrinsic triangulations

of Euclidean polyhedra, including triangulations where new

vertices have been inserted.

• We extend existing integer-based data structures to local

operations beyond edge flips.

• We extend the intrinsic Delaunay refinement algorithm from

Sharp et al. [2019a, Section 4.2] to surfaces with boundary, and

prove correctness and quality guarantees watertight surfaces.

• We present an accurate way to transfer piecewise linear func-

tions between input and intrinsic triangulations.

Robustness of our technique is evaluated by performing intrin-

sic Delaunay refinement on all manifold meshes in the Thingi10k

dataset and extracting the common subdivision (Section 6), which

in turn improves accuracy for various geometry processing tasks

geometry processing (Section 5).

ACM Trans. Graph., Vol. 40, No. 6, Article 252. Publication date: December 2021.

Integer Coordinates for Intrinsic Geometry Processing • 252:3

2 DATA STRUCTURE

Our data structure consists of a fixed input triangulation T 0
, plus a

dynamic intrinsic triangulation T 1
sitting on top of T 0

(Section 2.1).

We use V i ,Ei , F i to denote the vertices, edges, and faces of T i , resp.
Initially T 0

and T 1
are identical, but subsequent local operations

may add vertices to T 1
. We never remove vertices of T 0

since, in

general, such vertices cannot be removed without changing the

geometry of the surface. Hence, V 1 ⊇ V 0
, and V ⋆

:= V 1 \V 0
gives

the set of inserted vertices. For clarity, we generally use a,b, c for
vertices ofT 0

and i, j,k for vertices ofT 1
(which may also be inT 0

).

We also associate four basic quantities with T 1
:

• lengths ℓi j ∈ R>0 for each edge ij ∈ E1 (Section 2.2),

• normal coordinatesni j ∈ Z for each edge ij ∈ E
1
(Section 2.3),

• roundabouts r⇀
aj ∈ Z≥0 for each halfedge

⇀
aj ∈ H1

rooted at

a vertex a ∈ V 0
(Section 2.4), and

• barycentric coordinates q0i relative to T 0
for each inserted

vertex i ∈ V ⋆
(Section 2.2).

Note that this scheme differs from Gillespie et al. [2021, Section 5],

who always assume thatV 1 = V 0
—and hence cannot support many

of the local operations described in Section 3.

2.1 Connectivity

Formally, we consider triangulations T = (V ,E, F)
of a fixed polyhedral surface M . By triangulation

we mean a ∆-complex [Hatcher 2002, Section 2.1],

which allows, e.g., a single intrinsic triangle to “wrap

around” the surface and meet along its own edge

(inset, top). In general, the vertices of a face or edge

in a ∆-complex need not be distinct, and two distinct

elements can have identical vertices. For example,

there can be several edges ij with the same endpoints

i, j ∈ V , and we may also have i = j. Each edge ij is
associated with two oriented halfedges

⇀
ij ,

⇀
ji ∈ H

(inset). In practice a ∆-complex can be implemented via, e.g., the

halfedge data structure [Botsch et al. 2010, Chapter 2], or an edge

gluing map [Sharp and Crane 2020b, Section 4.1]. We use uσ to

denote a quantity u at a vertex, edge, face, or halfedge σ ; u
jk
i is a

quantity u at corner i of triangle ijk .

2.2 Geometry

Edge Lengths. The intrinsic geometry of

a triangulation is given by edge lengths ℓ :

E → R>0 that satisfy the triangle inequality

ℓki + ℓi j > ℓjk for each triangle corner
jk
i . Ini-

tially, T 0 = T 1
and both triangulations have

identical edge lengths ℓi j = | fj − fi |, where
f : V → R3 are the input vertex positions.

The edge lengths of T 1
will later be modified

by operations like intrinsic edge flips (Sec-

tion 3.2). Even then, we can draw individual

faces ijk ∈ F 1 as ordinary triangles in the

plane, and obtain quantities like corner an-

gles θ
jk
i via standard formulas. Finally, we use expx (u) to denote

the exponential map at x , which gives the point reached by walking

face-vertex
edge-vertex

edge-edge
vertex-vertex

edge of T
1

edge of T
0

Fig. 4. Points are encoded relative to both triangulationsT 0
andT 1

. For each

triangulation we store the simplex containing the point, and the barycentric

coordinates within that simplex.

in the tangent direction u for a distance |u | (see [Sharp et al. 2021,

Section 2.4.2] for implementation details).

Barycentric Coordinates. We encode points x ∈ M by barycentric

coordinates relative to a vertex, edge, or triangle, e.g., three positive

values ui + uj + uk = 1 for a triangle ijk (and for a vertex i we
have a single coordinate ui = 1). Importantly, for each point x we

store barycentric coordinates u and v relative to both T 0
and T 1

,

resp. (Figure 4). We use q0 and q1 to denote a barycentric coordinate
together with its associated simplex, on either T 0

or T 1
.

2.3 Normal Coordinates

We use normal coordinates (Figure 3) to encode how two triangula-

tions T 0,T 1
cross each-other. Classically this data can be stored on

either triangulation, i.e., one can count the number of times each

edge of T 1
is crossed by T 0

or vice versa. But to insert new vertices

in T 1
we must store normal coordinates on edges of T 1

—otherwise

the encoding becomes ambiguous. We hence think of each edge of

T 0
as a geodesic curve crossing edges of T 1

(Figure 5, right).

More explicitly, the value ni j ∈ Z indicates how many times each

edge ij ∈ E1 is crossed transversally by edges of E0; if an edge of

T 0
runs along ij, we let ni j = −1. In this latter case, no edge of T 0

can cross ij . The value n+i j := max(ni j , 0) hence gives the number of

transversal crossings; the value n−i j := −min(ni j , 0) is 1 on shared

edges and 0 otherwise. (Note that Gillespie et al. [2021] adopt a

different convention, where ni j = 0 for parallel edges.)

edge of T0

edge of T1

1
3

31

0

0

0
-1-1

-1

-1 -1
-1

-1

3

2

3

-1-1

-1

-1-1

Fig. 5. The number of crossings can be encoded on either triangulation.

However, storing values on the edges of T 0
does not account for vertices

inserted in T 1 (left); we hence store normal coordinates on T 1 (right).

ACM Trans. Graph., Vol. 40, No. 6, Article 252. Publication date: December 2021.

252:4 • Gillespie, Sharp, and Crane

edge of T
1

curve

edges crossing corner k

i

j

k

edges emanating from corner k

i

j

k

Fig. 6. The value c jki gives the number of curves crossing corner
jk
i , while

e jki gives the number of curves emanating from corner
jk
i .

Using the values n+i j we can count how many curves cross and

emanate from each corner of T 1
, resp. (Figure 6):

c
i j
k

:= 1

2

(
max

(
0,n+jk + n

+
ki − n

+
i j

)
− e

jk
i − e

ki
j

)
. (1)

e
i j
k

:= max(0,n+i j − n
+
jk − n

+
ki), (2)

(For curves that do not touch vertices, the corner coordinates c are
essentially dual to the normal coordinates n—see [Erickson and

Nayyeri 2013, Section 2.3].)

2.4 Roundabouts

Normal coordinates allow us to trace the edges

of T 0
as geodesic curves along T 1

(Section 3.1).

However, they do not uniquely determine the

correspondence between traced curves and log-

ical edges ab ∈ E0. For instance, flipping edge

mk of a tetrahedron results in two distinct in-

trinsic edges between vertices i and j (inset). Given a curve between

vertices i and j on the tetrahedron, it is not a priori obvious which

of the two logical edges the curve corresponds to.

halfedge of T
0

halfedge of T
1

both T
0
 and T

1

roundabout

i

0
03

1

4 4

0
0

12

3

4

Gillespie et al. [2021, Section 5.2] there-

fore introduce roundabouts r : H1 → Z≥0,
which for each vertex describe how the

outgoing edges from both T 0
and T 1

are

interleaved (inset). In particular, suppose

we enumerate the halfedges of T 0
around

some vertex a ∈ V 0
in counter-clockwise

order, starting from zero at some arbitrary

(but fixed) reference halfedge. Then for

each halfedge
⇀
aj ∈ H1

, the roundabout

r⇀aj gives the index of the first halfedge

ab ∈ H0
following

⇀
aj (which may be

⇀
aj itself). Unlike Gillespie et

al. we may insert new vertices—but need only store roundabouts

at shared vertices a ∈ V 0
, since edges of E0 always terminate at

vertices in V 0
.

2.5 Crossings

Finally, we call a point where edges ofT 0
andT 1

intersect a crossing.

A combinatorial crossing ζ = (
⇀
ij,p) describes a crossing as a 0-

indexed ordinal p along a halfedge
⇀
ij ∈ H1

—i.e., which crossing, as

we go from i to j. The same crossing with respect to the opposite

halfedge is given by ζ := (
⇀
ji ,ni j − p − 1); this reversal operation is

helpful when tracing curves. A geometric crossing z = (
⇀
ij,p,
⇀
ab,u,v)

also gives the barycentric coordinates u,v along halfedges
⇀
ab ∈ H0

and
⇀
ij ∈ H1

, resp.

Case 1 Case 2 Case 3

Fig. 7. A curve entering triangle jik along edge i j can proceed in 3 ways:

the left-most c ikj crossings go left (left), the rightmost ck ji crossings go right

(right), and the remaining crossings terminate at vertex k (center).

3 ALGORITHMS

We next describe basic operations on our data structure—detailed

pseudocode is given in Appendix B of the supplemental material.

3.1 Extracting Curves

Given only the normal coordinates n, we can trace out any edge of

T 0
as a curve γ along T 1

, via the procedure ExtractCurve (Algo-

rithm 2). This procedure takes any combinatorial crossing ζ on γ ,
and computes the full sequence (i, z1, . . . , zk , j) of geometric cross-

ings plus the start and end vertices i, j ∈ V 1
. (Note that this proce-

dure generalizes Gillespie et al. [2021, Section 6].)

We proceed in two steps. First, we find the triangle strip contain-

ing γ , purely using the integers ni j . Importantly, γ is guaranteed

not to leave this strip since the normal coordinates account for all

crossings. Hence, in the second step we can simply draw a straight

line through the strip to get the geometry of γ . It is only in this

second step that we use any floating point computation.

A subroutine TraceFrom (Algorithm 1) starts at a given com-

binatorial crossing ζ = (
⇀
ij ,p) and iteratively computes the next

combinatorial crossing until it reaches a vertex. Figure 7 shows how

the next crossing can be determined purely from integer data. Note

that the orientation of
⇀
ij determines the tracing direction.

ExtractCurve calls TraceFrom once in each direction, and

combines the two resulting crossing sequences. Using the round-

abouts, it identifies the sequence with an edge of T 0
. Finally, it

unfolds the corresponding triangle strip into the plane, where a

straight line through the two endpoints is intersected with each

interior edge to obtain the geometric crossings (Figure 8).

Note that one can also use ExtractCurve to convert a single

combinatorial crossing into a geometric crossing: just run the same

procedure, but return only the crossing of interest. We will refer to

this procedure as ExtractGeometricCrossing.

Fig. 8. We trace a curve γ by first unfolding a triangle strip in the plane, then

intersecting a straight line with each interior edge. Since normal coordinates

encode all crossings, this line is guaranteed to be contained in the strip.

ACM Trans. Graph., Vol. 40, No. 6, Article 252. Publication date: December 2021.

Integer Coordinates for Intrinsic Geometry Processing • 252:5

edge flip not flippable

Fig. 9. An edge flip replaces an edge with its opposite diagonal (left). A flip

cannot be performed if it would yield an isolated (degree-0) vertex, or if the

two triangles containing the edge form a nonconvex quadrilateral (right).

3.2 Edge Flip

An intrinsic edge flip reconnects a triangle pair along the opposite

diagonal (Figure 9, left). Unlike an ordinary (extrinsic) edge flip, the

new diagonal is a geodesic curve rather than a straight line segment

in space. An edge is flippable if and only if (i) both endpoints have

degree at least one after the flip, and (ii) the two triangles containing

the edge form a convex quadrilateral (Figure 9, right). Here we detail

how to update integer coordinates for an edge flip—note that our

treatment differs only slightly from [Gillespie et al. 2021, Equation

15], which does not account for inserted vertices.

Mesh Update. After updating the connectivity of T 1
, we obtain

the new length ℓlk by laying out the triangles ijk, jil in the plane

and measuring the distance from k to l .

Normal Coordinates & Roundabouts. The new normal coordinate

nkl does not depend on the geometry of T 1
, and is given by

nkl = c
jk
l + c

i j
k +

1

2

���cilj − ckij ��� + 1

2

���cl ji − c jki ��� − 1

2
e
ji
l −

1

2
e
i j
k

+ e
l j
i + e

jk
i + e

il
j + e

ki
j + n

−
i j .

(3)

We update each roundabout from its previous neighbor, e.g.,

r⇀
kl = mod

(
r⇀
ki + e

il
k + n

−
ki , deg0(k)

)
, (4)

l

j

i

k

where deg
0
(k) is the degree of vertex k

in triangulation T 0
. The quantity eilk in-

crements the roundabout index once for

each edge strictly between
⇀
ki and

⇀
kl , and

n−ki adds one if there is also an edge lying
along

⇀
ki . Recall from Section 2.4 that we

maintain these values only for halfedges

emanating from vertices a ∈ V 0
.

3.3 Face Split

Given a point x ∈ M expressed as barycentric coordinates v relative

to a face ijk ∈ F 1, the procedure SplitFace (Algorithms 5 and 6)

inserts a new vertexm ∈ V 1
, and computes the barycentric encoding

q0m = (u,abc) of x relative to T 0
.

SplitFace is the first of several new operations introduced in this

paper, which manipulate vertices rather than just flipping edges.

(Schaefer et al. [2002, Section 5.4] describe a face split operation

in the topological setting, but do not provide the ability to insert a

point at a particular geometric location, which is essential in our

setting of Euclidean polyhedra.)

Mesh Update. We first insert m into T 1
at x , splitting ijk into

three new triangles. The new edge lengths can be computed di-

rectly in barycentric coordinates—in particular, any tangent vector

w expressed in barycentric coordinates has length

∥w ∥2 = −ℓ2i jwiw j − ℓ
2

jkw jwk − ℓ
2

kiwkwi (5)

(see [Schindler and Chen 2012, Section 3.2] or [Sharp et al. 2021,

Sections 2.3.2 and 2.3.7]).We can hence compute ℓim = ∥v−(1, 0, 0)∥,
and similarly for ℓjm , ℓkm .

2

1

2

1

2

1

Normal Coordinates & Roundabouts. Unlike edge

flips, where the new normal coordinates depend

solely on the old ones, normal coordinates resulting

from a vertex insertion depend on the particular

geometric region R containing the inserted pointm
(see inset). We hence compute geometric crossings

for all curves passing through face ijk , then deter-

mine the region R via line-side tests (implemented

via a simple cross product). Ifm is extremely close

to a region boundary we may pick the wrong region

(due to floating-point error), but will still produce

valid connectivity for a nearly identical vertex lo-

cation. Moreover, barycentric coordinates v arising

from, say, Delaunay refinement (Section 4.2) will

not be exact anyway. New roundabouts emanating

from vertices in {i, j,k} ∩V 0
are set via Equation 4.

Position on T 0
. The geometric crossings at R’s corners provide

barycentric coordinates u andv relative toT 0
andT 1

resp. Hence, to

get q0m we simply express x as a linear combination of the corners’

v−coordinates, then take the same linear combination of the corners’

u-coordinates (see Appendix A for details).

3.4 Edge Split

Similarly, given a point x ∈ M expressed as barycentric coordinates

v relative to a halfedge
⇀
ij ∈ H1

, procedure SplitEdge (Algorithm 7)

inserts a new vertexm ∈ V 1
, and updates all associated quantities.

If ni j ≥ 0 (i.e. no curve runs along ij), we simply perform a face

split followed by an edge flip (Figure 10, top). However, if ni j < 0

(which is common in practice—e.g. Section 4.2), we perform an

explicit edge split to insert the new vertex along the coincident curve

(Figure 10, bottom). After such an edge split a single edge ab ∈ E0

may correspond to a sequence of geodesic segments meeting at

intermediate vertices i ∈ V ⋆
. But since each segment terminates at

vertices, one can still encode these curves via normal coordinates.

Mesh Update. We insert a new vertexm along ij and triangulate

any adjacent faces, computing the new edge lengths via Equation 5.

2

Normal Coordinates & Roundabouts. When ni j < 0

the new normal coordinates depend only on the old

ones: we set nmj and nmi equal to ni j , and set

nmk = max(nki ,njk , 0). (6)

Note that if ni j < 0, edgemk crosses all curves con-

tained in face ijk (since they may only emanate from i
or j , or cross k). The number of such curves is precisely

max(nki ,njk , 0).

ACM Trans. Graph., Vol. 40, No. 6, Article 252. Publication date: December 2021.

252:6 • Gillespie, Sharp, and Crane

2
1

2

1

2

1
1

0

0
0

0

1
0

0

Fig. 10. Generally, one can split edge i j by performing a face split on a

neighboring face followed by an edge flip (top). However, if i j carries a
curve, this strategy will cause the inserted vertex to miss the curve (bottom).

We hence provide a different edge split procedure for this case in Section 3.4.

As with face splits, roundabouts on any new halfedges emanating

from original vertices can be set from their neighbors (Equation 4).

Position on T 0
. Since, i and j necessarily have known locations

q0i ,q
0

j resp. along some edge in ab ∈ E0, we can simply interpolate

by v to obtain the position q0m of x along ab.

3.5 Vertex Removal

Generally, a vertex of the original triangulation cannot be removed

without distorting the intrinsic metric: any curvature at that vertex

would be lost. However, inserted vertices i ∈ V ⋆
have no curvature,

and can hence be removed safely. In fact this operation is necessary

for Delaunay refinement of domains with boundary (Section 4.2).

The basic strategy behind RemoveVertex (Algorithm 8) is to

flip edges incident on the vertex to be removed until it has degree

three, then delete the three edges incident on the vertex as well

as the vertex itself. No other data needs to be updated, since the

edges of the resulting triangle already appear in the triangulation.

Theorem D.1 proves the correctness of this procedure for simplicial

complexes. A nearly identical procedure can be used to remove an

inserted boundary vertex. Schaefer et al. [2002, Section 5.4] also

suggest a similar flipping procedure, but do so in the topological

setting where the necessary edge flips are always valid—they do not

consider the convexity condition (Section 3.2).

3.6 Moving Inserted Vertices

Using the previous operations, we can define a procedure for moving

around inserted vertices. Specifically, given a tangent vector v at an

inserted vertex i , we can move i along v in the following way:

• First, compute the new location x = expi (v).
• Insert x using SplitFace.

• Remove i using RemoveVertex.

We insert x first since the removal procedure could flip edges in-

cident on the triangle containing x , invalidating its barycentric

Fig. 11. We extract the connectivity of common subdivision within each

triangle using its normal coordinates.

coordinates. Note that Sharp et al. propose an alternative strategy

for local vertex displacement [Sharp et al. 2019a, Section 3.3.3].

3.7 Common Subdivision

As noted previously, the common subdivision
2 S of T 0

and T 1
is the

polygon mesh obtained by “slicing up” the underlying surface along

the edges of both T 0
and T 1

. The vertices of S are hence a superset

ofV 0
andV 1

, and every edge or face of T 0
and T 1

can be expressed

as union of edges or faces of S (resp.). Moreover, the faces of S are

always planar and convex. Most importantly in our setting, any

piecewise-linear function on T 0
or T 1

can be represented exactly as

a piecewise-linear function on S .
The common subdivision thus serves as an essential “bridge” be-

tween an intrinsic triangulation and the original extrinsic domain: it

provides the minimal piecewise linear basis on which both intrinsic

data at vertices and extrinsic vertex positions can simultaneously

be interpolated. S can then be used to pull back functions from the

abstract intrinsic setting to an ordinary mesh sitting in space.

Note however that even if T 0
and T 1

have nice elements, S is

not in general a high-quality mesh, and may not itself be suitable

for, e.g., solving PDEs. Rather, it plays a complementary role in the

geometry processing pipeline, enabling (for instance) transfer of

data between triangulations (Section 4.3), or visualization of data

downstream via standard rendering tools.

We compute the common subdivision by cutting T 1
along the

edges of T 0
. First we extract the connectivity of S , using only the

normal coordinates ni j . Then we recover the intersection geometry,

allowing us to interpolate data stored at the vertices of T 0
or T 1

to

S—most commonly, vertex positions on T 0
along with any solution

data on T 1
. This procedure was previously described by Sharp et al.

[2019a, Section 3.4.2]; we recap it here for completeness, and to give

a convenient description using our integer coordinates. Note that

one can construct pathological cases in which there are quadratically

many intersections between T 0
and T 1

(or worse—consider a trian-

gulation with many Dehn twists, as pictured in [Sharp et al. 2019a,

Figure 4]). However, we do not observe such extreme behavior in

practice (see Section 7).

2
Also known as the supermesh in the FEM literature, e.g. Farrell et al. [2009, Section 2].

ACM Trans. Graph., Vol. 40, No. 6, Article 252. Publication date: December 2021.

Integer Coordinates for Intrinsic Geometry Processing • 252:7

Connectivity. We subdivide T 1
independently in each face ijk

(Figure 11). There two cases to consider. In case 1, when no curves

emanate from any corner, we simply connect the first c
jk
i crossings

along edge ij to the first c
jk
i crossings along ik (in order), and like-

wise for corners j and k . In case 2 curves emanate from some corner;

without loss of generality, let this corner be k so that the number

of emanating curves is e
i j
k > 0. We walk from i to j, connecting the

first c
jk
i crossings to those along ik , the next e

jk
i crossings to vertex

k , and the remaining ckij crossings to those along edge kj . Note that
curves running along edges (ni j < 0) require no special treatment.

Intersection Geometry. Next, we associate each vertex i of the
common subdivision with a point in T 0

and a point in T 1
, encoded

in barycentric coordinates (Section 2.2). Using these values, one can

linearly interpolate data from T 0
or T 1

to the vertices of S . Again,
there are just two cases: each vertex i in S is either a vertex ofT 1

or

the intersection of an edge ofT 0
with an edge ofT 1

. In the first case,

the position onT 1
is given by i itself, and the position q0i onT

0
was

computed when i was inserted. In the second case, we compute the

desired barycentric coordinates using ExtractCurve.

3.8 Visualization

To produce figures depicting intrinsic triangulations (e.g. Figure 12),

we compute the common subdivision (Section 3.7) and draw the

edges of the input mesh with a black wireframe, while coloring the

intrinsic triangles in arbitrarily-chosen colors. In figures displaying

functions defined on intrinsic triangulations (e.g. Figure 15), we in-

terpolate the solutions along the common subdivision for rendering.

3.9 Robust Implementation

Our integer coordinates are guaranteed to encode a triangulation

sitting atop T 1
. The geometric accuracy of this triangulation, of

course, depends on floating point arithmetic, which can become

inaccurate in near-degenerate configurations. Exact predicates have

been applied with great success to similar problems [Devillers and

Pion 2003]. Unfortunately they do not directly apply to intrinsic

triangulations, as the predicates that we evaluate are not fixed func-

tions of the input data; an intrinsic edge length can depend upon

arbitrarily many input edge lengths. Hence, we focus on fast and

robust implementations using ordinary floating point arithmetic.

One essential tool for manipulating intrinsic triangulations on

near-degenerate input meshes is intrinsic mollification, introduced

by Sharp and Crane [2020b]. Mollification provably ameliorates

near-degenerate meshes by adding a small value δ to every edge

length, ensuring that every triangle satisfies the triangle inequality

with slack at least ϵ . This operation only changes the geometry

if some triangle is within ϵ of being degenerate, and even then

changes the geometry by a negligible amount. Intrinsic mollification

works particularly well with our data structure compared to past

approaches: the signpost data structure of Sharp et al. [2019a] relies

on tracing edges along the surface, which become less accurate

when mollification is applied. Integer coordinates have no such

problem. In our experiments we mollify with ϵ = 10
−5h, where h is

the mean edge length, and find that it resolves almost all numerical

difficulties.

Even after mollification, it is still beneficial to use care when

working with floating point. For example, there are well-conditioned

triangles on which the Delaunay condition (Equation 8, discussed in

the next section) is difficult to evaluate; in practice, we only enforce

Equation 8 up to some ϵ tolerance. As a further example, when

computing new normal coordinates in SplitFace, one could lay

out the face in the plane, and independently count intersections

along the new edges. However, this can produce invalid normal

coordinates in floating point. We apply a more nuanced policy (see

Appendix B) which always yields valid normal coordinates.

3.10 Other Operations

Normal coordinates also enable a wide variety of other operations

not detailed here. For instance, Schaefer et al. [2002, Section 5] pro-

vide algorithms for counting connected components, checking if

crossings are part of the same curve, checking if curves are iso-

topic, and computing the oriented intersection number. Erickson

and Nayyeri [2013] provide an asymptotically-fast algorithm for

tracing normal curves across a surface. Finally, Dynnikov [2020,

Proposition 13] provides an algorithm for computing how many

times curves represented by normal coordinates intersect.

4 RETRIANGULATION AND TRANSFER

Retriangulation. On top of the basic operations from Section 3,

one can start to build up the same kind of fundamental building

blocks as in extrinsic geometry processing. In this section we focus

on intrinsic Delaunay refinement, which is a critical tool guaran-

teeing that a high-quality triangulation can always be built on top

of any (e.g., low-quality) input mesh. In particular, we give a new

proof about guaranteed quality for surfaces without boundary, and

extend the algorithm to surfaces with boundary (without proof).

Transfer. Given a function on a high-quality intrinsic Delaunay

mesh, there are then several ways to transfer this function back

to an ordinary (extrinsic) mesh. One is to simply copy values at

shared vertices, but this approach is often less than satisfactory since

the intrinsic and extrinsic basis functions can look quite different.

Another is to interpolate it over the common subdivision—made far

more robust by our data structure. In this section, we also describe

a third, alternative route that finds the best representation of an

intrinsic function in a basis on the original mesh (Section 4.3), again

made possible by robust extraction of the common subdivision.

4.1 Intrinsic Delaunay Triangulations

One key application of intrinsic triangulations

is the computation of intrinsic Delaunay trian-

gulations (Figure 12, top). A triangulation is said

to be Delaunay if the sum of angles opposite

every edge is at most π , i.e. for every ij ∈ E we have

θ
i j
k + θ

ji
l ≤ π . (7)

Delaunay triangulation have a number of beneficial properties.

One consequence of Equation 7 is that edges of a Delaunay triangu-

lation must have nonnegative cotan weights:

cotθ
i j
k + cotθ

ji
l ≥ 0. (8)

ACM Trans. Graph., Vol. 40, No. 6, Article 252. Publication date: December 2021.

252:8 • Gillespie, Sharp, and Crane

Fig. 12. Using our integer-based data structure, we can not only improve

near-degenerate meshes by generating intrinsic Delaunay triangulations
(top), but can also extract the common subdivision after computing a high-

quality intrinsic Delaunay refinement (bottom).

In fact, Equation 8 is equivalent to Equation 7 above, and provides

a convenient formula for checking the Delaunay property in an

intrinsic triangulation. Moreover, Equation 8 ensures that the finite

element Laplacian L satisfies the maximum principle, guaranteeing

that discrete harmonic functions do not have local extrema in the

interior of the domain [Bobenko and Springborn 2007, Proposition

19]. Similarly Equation 8 also ensures that discrete harmonic vector

fields are “flip-free” [Sharp et al. 2019b, Section 5.4]. Furthermore,

the local Delaunay condition implies the empty circumcircle property:

each triangle’s geodesic circumdisk contains no vertices, illustrated

in Figure 13, left [Bobenko and Springborn 2007, Proposition 10].

The Delaunay triangulation can be computed via a simple greedy

algorithm: flip any non-Delaunay edge until all edges satisfy Equa-

tion 7 [Bobenko and Springborn 2007, Propositions 11 and 12].

4.2 Intrinsic Delaunay Refinement

Delaunay refinement inserts vertices in order to produce a Delaunay

mesh whose triangles all satisfy a minimum angle bound (Figure 12,

bottom). Here we modify Chew’s second algorithm to perform in-

trinsic Delaunay refinement [Chew 1993; Shewchuk 1997]. This

problem has been extensively studied in the plane, but an intrinsic

(i.e. geodesic) scheme was only recently proposed by Sharp et al.

[2019a, Section 4.2]. However, they did not handle meshes with

Fig. 13. Triangles in Delaunay meshes have empty circumdisks, and thus

well-defined circumcenters (left). When necessary, we locate a triangle’s

circumcenter by walking outwards from its barycenter (right).

boundary—here we resolve the essential difficulties of the bound-

ary case, and show how refinement can be implemented using our

integer-based data structure.

In the plane, the basic algorithm is to greedily pick any triangle

which violates the minimum angle bound, insert a vertex at its cir-

cumcenter, then flip to Delaunay. This process continues until all tri-

angles satisfy the angle bound. If a triangle’s circumcenter is outside

the domain, then the boundary edge ij separating the triangle from

its circumcenter is split at its midpoint; subsequently, all interior

vertices within at least a distance of ℓi j/2 are removed—though re-

moving additional interior vertices causes no issues (Appendix C.1).

One can prove that this process succeeds for minimum angle bounds

up to 25.65 degrees on planar domains with boundary angles at least

60
◦
[Shewchuk 1997, Section 3.4.2]. More advanced versions of this

procedure can achieve better angle bounds, e.g. [Rand 2011], but

here we restrict our attention to the basic algorithm for simplicity.

There are two difficulties in adapting this algorithm to the in-

trinsic setting: locating circumcenters and computing (geodesic)

distances. As mentioned earlier, intrinsic Delaunay triangulations

obey the empty circumcircle property; hence each triangle has an

intrinsically-flat circumdisk with a well-defined center (Figure 13,

left). So long as this center corresponds to a point on the surface, it

can be found by walking from the triangle’s barycenter (Figure 13,

right). In practice, we compute triangle ijk’s circumcenter in ho-

mogeneous (i.e., unnormalized) barycentric coordinates v̂i via the
following formula [Schindler and Chen 2012, Section 2.3]:

v̂i := ℓ
2

jk (ℓ
2

i j + ℓ
2

ki − ℓ
2

jk), (9)

and then normalize to obtain barycentric coordinates

vi :=
v̂i

v̂i+v̂j+v̂k
. (10)

To locate the circumcenter on the surface, we then evaluate the

exponential map (Section 2.2) starting at the barycenterwi = w j =

wk = 1/3, along the vectorv −w . If we hit a boundary edge ij while
tracing out this path, then the circumcenter is not contained in the

surface, so we split ij at its midpoint and flip to Delaunay. We must

then remove all inserted interior vertices within a geodesic ball of

radius ℓi j/2 centered at the inserted point. Computing geodesic

distance on a surface mesh is nontrivial, but Xia [2013, Corollary 1]

shows that on a Delaunay triangulation any vertex inside a geodesic

ball of radius r will also be inside the Dijkstra ball of radius 2r (i.e.

ACM Trans. Graph., Vol. 40, No. 6, Article 252. Publication date: December 2021.

Integer Coordinates for Intrinsic Geometry Processing • 252:9

vertices

original
IDT - copy values
IDT - L

210-4

26 27 28 29 210 211

10-3

10-2

10-1
solution error

28.1x11.5x

Fig. 14. Accuracy is improved by transferring PDE solutions back to an

original triangulation as the L2-nearest solution, evaluated via the common

subdivision. Here we generate random low-quality meshes of the unit square

by random edge splits (left), and plot the error in the solution of a Poisson

equation compared to analytic ground truth, always represented in the basis

of the original triangulation (right). Each data point is the average error

over 100 trials. As expected, solving on the intrinsic Delaunay triangulation

dramatically increases accuracy, but further improvements are gained by

choosing the solution on the original mesh which is L2-nearest to the

intrinsic solution, rather than naively copying vertex values.

points whose distance along the edge graph are at most 2r). We

hence remove all interior inserted vertices within a Dijkstra distance

of ℓi j . While Xia considers only the planar setting, their proof (which

is based on triangle strips) applies without modification to intrinsic

Delaunay triangulations of surfaces.

Observe also that, as in the planar case, Delaunay refinement

only ever removes previously-inserted vertices. Hence, as promised

in Section 2, the original extrinsic vertex set V 0
is still preserved.

On meshes with narrow cone vertices or boundary

angles, it may be impossible to find any triangulation

satisfying a given angle bound. In such cases, we do

not insert circumcenters of intrinsic triangles which are

incident on exactly one narrow vertex, or are entirely

contained in a triangle ofT 0
which is incident a narrow

vertex, and ignore such triangles when computing the

minimum corner angle of the output mesh. Although

the final output may violate the angle bound, such trian-

gles appear only near narrow vertices. In analogy with

the planar case, we set 60
◦
as the minimum allowed

angle sum (see inset); in practice the vast majority of

meshes obey this constraint at all vertices (97.2% of Thingi10k), and

even on those which do not we obtain high-quality triangulations.

4.3 Attribute Transfer

Intrinsic triangulations can drastically improve the quality of solu-

tions to PDEs on low-quality meshes, as will be explored in Section 5.

In practice, however, one often needs to represent the solution on

the input mesh. Past approaches have simply “copied back” the

solution values at vertices of the original mesh, but this strategy is

ad-hoc and suboptimal. A more principled approach is to choose the

function on the original mesh which is closest to the intrinsic solu-

tion. This strategy has been widely explored in the FEM literature

(e.g. Jiao and Heath [2004]) in the context of extrinsic triangula-

tions. With our reliable common subdivision we can now apply this

technique in the intrinsic setting. Here, we restrict treatment to

piecewise-linear bases and L2 distance for simplicity, though the

same strategy could easily be applied to other basis functions and

notions of distance.

Precisely, given a function f on the intrinsic triangulation, we

seek
ˆf on the original mesh that minimizes the squared L2 distance

∥ f − ˆf ∥2L2 :=

∫
M
| f (x) − ˆf (x)|2dx . (11)

Here, f and
ˆf are functions represented in finite-dimensional bases

with nodal values at the vertices of the intrinsic triangulation and

the original mesh resp. In traditional finite elements, this integral

commonly arises over a single triangulation, in which case it can be

evaluated via the Galerkin mass matrx M as

∥ f − ˆf ∥2L2 = (f −
ˆf)TM(f − ˆf), (12)

whereM is constructed as in [Strang and Fix 2008, Chapter 10, (32)].

However, in the intrinsic setting f and
ˆf are encoded over different

triangulations; they are members of different function spaces. The

key observation is that the common subdivision S (Section 3.7)

provides exactly the structure needed to evaluate ∥ f − ˆf ∥2L2 , as both

functions are linear on each triangle of S . In fact, we have

∥ f − ˆf ∥2L2 = (P1 f − P0
ˆf)TMS (P1 f − P0 ˆf), (13)

where nowMS is the Galerkin mass matrix of the common subdi-

vision, and P0, P1 are interpolation matrices which map piecewise-

linear functions on original and intrinsic triangulations to piecewise-

linear functions on S , resp. In particular, P0 is a |V
0 | × |V S | matrix,

where each row corresponds to a vertex of S , and has that vertex’s

barycentric coordinates on T 0
as entries. P1 is defined likewise for

T 1
. We then find the function

ˆf which minimizes Equation 13 as

the solution to the following positive-definite linear system:

M0
ˆf = PT

0
MSP1 f . (14)

Here M0 is the Galerkin mass matrix of T 0
, and can be prefactored

if desired to efficiently transfer many functions:

We can leverage this formulation to transfer functions from any

intrinsic triangulation back to the original mesh. In Figure 14, we

show how this transfer indeed improves the accuracy of PDE solu-

tions as measured on the original low-quality mesh. This machinery

is enabled because our integer coordinates efficiently and robustly

compute the common subdivision. More broadly, this paradigm

opens the door to a wide variety of future finite-element formula-

tions involving intrinsic triangulations.

5 APPLICATIONS

The applications of intrinsic triangulations to robust geometry pro-

cessing have been extensively explored in past work, including

parameterization, surface embedding, distance computation, spec-

tral filtering, surface editing, etc. [Fisher et al. 2006; Bobenko and

Izmestiev 2008; Sun et al. 2015; Sharp et al. 2019a; Sharp and Crane

2020b,a; Fumero et al. 2020; Gillespie et al. 2021]. The particular

importance of our new data structure is not that it enables new

applications on the intrinsic mesh—in fact, to merely execute most

ACM Trans. Graph., Vol. 40, No. 6, Article 252. Publication date: December 2021.

252:10 • Gillespie, Sharp, and Crane

input

|V|=2948

intrinsic
Delaunay

triangulation

|V|=2948

intrinsic
Delaunay

refinement

|V|=11954

Th
in

gi
ID

 4
43

95

mean error: 28% mean error: 7% mean error: 2%

Fig. 15. Running PDE-based algorithms such as the heat method on poor

triangulations (left) can lead to inaccurate solutions. Flipping to intrinsic De-

launay (center) and performing Delaunay refinement (right) can drastically

improve the results.

methods, one needs only the basic intrinsic connectivity and edge

lengths. Rather, the point is that we can now provide a valuable

guarantee of robustness—namely that the connectivity of the com-

mon subdivision is always properly recovered—and hence we can

exactly represent intrinsic solutions on the extrinsic surface (Sec-

tion 6 provides experimental evaluation on a large dataset). In turn,

data computed on a high-quality mesh can reliably be used for

downstream tasks (texture mapping, deformation, etc.) in the origi-

nal context. In this section we explore this approach using several

established algorithms.

5.1 PDE-Based Geometry Processing

PDE-based methods abound in geometry processing, as they are

generally simple to implement and benefit from decades of research

into numerical solvers. Many such methods depend only on intrinsic

data, and are hence a natural application of intrinsic Delaunay tri-

angulations and refinements. For low-quality input meshes, simply

running standard algorithms on an intrinsic triangulation (instead

of the original mesh) yields solutions of dramatically higher quality.

In Figures 15 and 16, we show several representative examples of

this paradigm: fast geodesic distance computation [Crane et al. 2017],

local parameterization via the logarithmic map [Sharp et al. 2019b],

and smooth vector fields [Knöppel et al. 2013]. Unfortunately, the

high-quality intrinsic solution is not a piecewise-linear function on

the original triangulation—and hence cannot be used immediately

downstream. Here the common subdivision comes to the rescue: it

allows one to represent the intrinsic solution exactly on an ordinary

(extrinsic) mesh, for visualization, deformation, or other purposes.

Alternatively, we can transfer the solution back to the original basis

à la Section 4.3, again taking advantage of the common subdivision.

Importantly, unlike past schemes, our integer encoding guarantees

that this subdivision can be correctly recovered.

Th
in

gi
ID

 4
43

95

intrinsic
Delaunay

refinement

|V|=1156

intrinsic
Delaunay

triangulation

|V|=300

input

|V|=300

input

|V|=9389

intrinsic
Delaunay

triangulation

|V|=9389

intrinsic
Delaunay

refinement

|V|=33963

ThingiID54674

Logarithmic Map

Smooth Vector Field

Fig. 16. Here we compute a local parameterization (the logarithmic map, top),
and a smooth vector field (bottom) using the connection Laplacian. Both pro-

cedures yield inaccurate results on near-degenerate inputs (left)—intrinsic
Delaunay triangulations (center) and intrinsic Delaunay refinements (right)
greatly improve solution quality. Whether our solution is a scalar function

or vector field, we can visualize it on the common refinement.

signposts
[Sharp+ 2019]

normal
coordinates

geodesic
loop

geodesic Bézier curve

Fig. 17. We construct geodesic paths by flipping edges in a normal co-

ordinate intrinsic triangulation, as in [Sharp and Crane 2020a]. Normal

coordinates guarantee a valid path, even on degenerate inputs (left). This
unlocks advanced applications of geodesics in normal coordinates with the

same guarantees, such as geodesic loops and Bézier curves (right).

ACM Trans. Graph., Vol. 40, No. 6, Article 252. Publication date: December 2021.

Integer Coordinates for Intrinsic Geometry Processing • 252:11

Method

Intrinsic
Delaunay

Triangulation

Intrinsic
Delaunay
Refinement

Explicit Overlay 100 % -

Signpost Tracing 96.0 % 69.1 %

Integer Coordinates 100 % 100 %

Table 1. The success rate of our method and past approaches for building

high-quality intrinsic triangulations in the Thingi10k dataset. For each we

construct a Delaunay triangulation, either on the original vertex set or with

Delaunay refinement to a 25
◦
minimum angle bound, and attempt to recover

the connectivity of the common subdivision. The explicit overlay method

does not support refinement.

5.2 Flip-Based Geodesic Paths

The previous sections have demonstrated the value of intrinsic tri-

angulations as a high-quality basis for discretizing functions on

surfaces; more broadly, these triangulations also provide simple and

robust solutions to other tasks across geometry processing. As an

example, the recent FlipOut procedure of Sharp and Crane [2020a]

computes exact geodesic paths on surfaces via a simple intrinsic

edge flipping strategy, introducing the geodesic as a path of edges

in the triangulation. This method is easily implemented in our in-

teger representation in terms of the mesh operations in Section 3,

and the resulting geodesic paths may then be recovered with the

ExtractEdge subroutine. Computing geodesics with our robust

integer coordinates is particularly appealing, because geodesic algo-

rithms are notoriously difficult to implement robustly [Sharp and

Crane 2020a, Section 5.3]. Even the method of Sharp et al. uses the

signpost data structure, which may fail to reconstruct a connected

path along the surface for degenerate inputs. In contrast, implement-

ing FlipOut in our integer coordinate representation extends the

benefits of our approach to this task, including a guarantee of valid

connectivity in the output (Figure 17, left). It also enables higher-

level tasks involving geodesic paths to be safely run on low-quality

input, such constructing geodesic loops on surfaces, and even geo-

desic Bézier curves, using a de Casteljau-style scheme due to Morera

et al. [2008] as shown in Figure 17, right. Experimentally, we repeat

the benchmark of Sharp and Crane [2020a, Section 5.1] and validate

that our integer scheme successfully generates a connected polyline

along the surface across ∼62,000 trials on the Thingi10k dataset.

6 EVALUATION

We implemented all algorithms in C++; since basic vertex-face adja-

cency list cannot represent a general ∆-complex (Section 2.1), we use

a halfedge data structure for triangle meshes. Timings are measured

on a single core of an Intel i9-9980XE with 32 GB of RAM. An imple-

mentation is provided at https://github.com/MarkGillespie/intrinsic-

triangulations-demo.

Performance. Generally our data structure is quite fast, computing

Delaunay refinements for complex meshes in seconds. For example,

computing the Delaunay refinement Figure 15 takes 0.2s, and the

Delaunay refinement in Figure 16 (top) takes 0.6s. Because we lazily

recover intersection geometry from our integer coordinates when

signposts
[Sharp+ 2019]

integer coordinates common subdivision

Fig. 18. Past methods extracted edges by tracing “signposts” along themesh,

which may fail in the presence of degenerate triangles. In contrast, our

integer coordinates always yield a topologically-valid common subdivision,

even on extremely poor quality inputs.

inserting vertices, routines such as Delaunay refinement which per-

form many insertions may become moderately expensive on large

near-degenerate inputs. For instance we take 4 minutes to perform

Delaunay refinement on 719791 (Figure 19, top) whereas signposts

take only 1.5 minutes, but on such meshes signposts generally fail

to compute a valid common subdivision. Section 7 discusses hybrid

routines which may give the best of both worlds.

6.1 Robustness

We validate robustness by successfully computing Delaunay triangu-

lations, refinements, and their common subdivisions on all manifold

meshes in Thingi10k [Zhou and Jacobson 2016]. In particular, we

used MeshLab to convert each mesh to the PLY file format [Cignoni

et al. 2008], resulting in 7696 valid manifold meshes. We begin by

mollifying each mesh to a tolerance of 10
−5

(Section 3.9). For each

model we compute the intrinsic Delaunay triangulation (Section 4.1)

with a tolerance of 10
−5
, as well as an intrinsic Delaunay refinement

(Section 4.2) with a 25
◦
angle bound. We verify that the algorithms

terminate with the expected conditions. Additionally, we success-

fully extract an explicit mesh of the common subdivision in both

cases, except for 1 model in the case of refinement whose common

subdivision contains around 30 million vertices (Figure 19, top).

We compare against the explicit overlay representation of Fisher

et al. [2006] and the signpost representation of Sharp et al. [2019a]

(Table 1). The overlay representation similarly offers a guarantee of

valid connectivity, but does not provide a constant-time edge flip

operation (like normal coordinates do). More importantly it does

not support operations beyond edge flips and thus cannot perform

Delaunay refinement. Signposts support a wide range of operations,

but may not successfully recover the common subdivision on degen-

erate inputs (Figure 18). The statistic reported here differs from the

result in Sharp et al. [2019a], because no preprocessing of meshes

is performed. For refinement Sharp et al. [2019a] do not treat the

boundary case, so we evaluate only on models without boundary.

7 LIMITATIONS AND FUTURE WORK

Limitations. The common subdivisions that we compute after

Delaunay refinement can be quite large: on the difficult Thingi10k

ACM Trans. Graph., Vol. 40, No. 6, Article 252. Publication date: December 2021.

https://github.com/MarkGillespie/intrinsic-triangulations-demo
https://github.com/MarkGillespie/intrinsic-triangulations-demo

252:12 • Gillespie, Sharp, and Crane

Th
in

gi
ID

 7
19

79
1

|V|=871,434

|V|=707,148

ThingiID 719790

Fig. 19. We fail to compute an explicit mesh of the common subdivision

following Delaunay refinement on one Thingi10k model (top). Its common

subdivision would contain 34 million vertices and our program runs out of

memory. We succeed on a nearly identical model (bottom), whose common

subdivision contains merely 27 million vertices.

dataset, the mean increase in |V | is 20x , and the 95
th

percentile

increase is 45x . We emphasize again that the common subdivision

is not generally a high-quality mesh anyway: one should perform

numerical computations on the intrinsic triangulation instead. The

intrinsic mesh has much higher element quality and is generally

much smaller with a mean increase in |V | of 3.7x and 95
th
percentile

increase of 7.8x . However, for applications that rely on the common

subdivision (e.g. Section 4.3), it would still be beneficial to explore

strategies for simplifying S .
A related issue is that Delaunay refinement sometimes generates

meshes with many small triangles. One can prove that Delaunay

refinement in the plane produces well-graded meshes, meaning es-

sentially that it only places small triangles in regions with small

features, and our Delaunay refinement on surfaces seems to behave

similarly. Nonetheless, on poorly-conditioned input meshes, De-

launay refinement can insert many small triangles. This can cause

problems for diffusion-based algorithms (e.g. the logarithmic map

computation in Figure 16), which use the mean edge length to de-

termine a suitable diffusion time. We found that computing the

diffusion time on the original mesh and then performing diffusion

on the intrinsic triangulation produced the best results.

More broadly, we inherit the usual tradeoffs of the intrinsic para-

digm. There is no clear application to some extrinsic problems (such

as bending energies), and algorithms applied in the intrinsic setting

must be adapted to take edge lengths as input (though this transla-

tion is generally straightforward). As with past work on intrinsic

triangulations, our data structure always exactly preserves the in-

put geometry. This imposes a strong restriction that V 0 ⊆ V 1
in

general position, and furthermore precludes any mesh repair-style

operations that might fix spurious holes or handles in the input.

Relaxing these assumptions is an important area of ongoing work.

Hybrid Data Structures. At this point, there are several intrinsic

triangulation data structures, but no single one is perfect:

• Overlay (explicit) provides exact connectivity; flipping can

be slow; no vertex insertion.

• Signposts (implicit) provide inexact connectivity; flipping and

vertex insertion are both fast.

• Integer coordinates (implicit) provide exact connectivity; flip-

ping is fast; vertex insertion can be slow.

We conjecture that a good way to get the best of all worlds would

be to use a hybrid signpost + integer coordinate data structure.

This is fully implicit, avoiding the quadratic costs that may arise

when explicitly tracking edge crossings. Nonetheless, flipping and

insertion remain fast, and connectivity is exact, if one accepts the

inserted locations.

Even further in the implicit direction, storing edge lengths is an

“optimization” in our data structure. One could just store the nor-

mal coordinates and original triangulation, recovering edge length

whenever necessary via a layout operation. This is appealing, since

it is truly an integer-only representation for intrinsic triangulations.

General geodesic curves. It would also be natural to use this ma-

chinery as a representation for general geodesic curves on surfaces,

which commonly arise in geometry processing tasks such as cutting,

segmentation, etc..

8 ACKNOWLEDGMENTS

Thanks to Boris Springborn and Dylan Thurston for valuable con-

versations, and to Derek Liu for pointing us to the existing FEM

literature on supermeshes. This work was supported by a Packard

Fellowship, NSF Award 1717320, DFG TRR 109, an NSF Graduate

Research Fellowship, and gifts from Autodesk, Adobe, and Facebook.

REFERENCES

Mark Bell. 2013–2018. flipper (Computer Software). https://pypi.python.org/pypi/

flipper.

Mark Bell. 2015. Recognisingmapping classes. Ph.D. Dissertation. University ofWarwick.

Alexander I Bobenko and Ivan Izmestiev. 2008. Alexandrov’s theorem, weighted

Delaunay triangulations, and mixed volumes. In Annales de l’institut Fourier, Vol. 58.

447–505.

Alexander I Bobenko and Boris A Springborn. 2007. A discrete Laplace–Beltrami

operator for simplicial surfaces. Discrete & Computational Geometry 38, 4 (2007),

740–756.

Mario Botsch, Leif Kobbelt, Mark Pauly, Pierre Alliez, and Bruno Lévy. 2010. Polygon

Mesh Processing. CRC press.

L Paul Chew. 1993. Guaranteed-quality mesh generation for curved surfaces. In Pro-

ceedings of the ninth annual symposium on Computational geometry. 274–280.

Paolo Cignoni, Marco Callieri, Massimiliano Corsini, Matteo Dellepiane, Fabio Ganov-

elli, and Guido Ranzuglia. 2008. Meshlab: an open-source mesh processing tool.. In

Eurographics Italian chapter conference, Vol. 2008. Salerno, Italy, 129–136.

Keenan Crane, Clarisse Weischedel, and Max Wardetzky. 2017. The Heat Method for

Distance Computation. Commun. ACM 60, 11 (Oct. 2017), 90–99.

Olivier Devillers and Sylvain Pion. 2003. Efficient Exact Geometric Predicates for

Delauny Triangulations.. In Proc. 5th Workshop Algorithm Eng. Exper. 37–44.

Ivan Dynnikov. 2020. Counting intersections of normal curves. arXiv preprint

arXiv:2010.01638 (2020).

Jeff Erickson and Amir Nayyeri. 2013. Tracing compressed curves in triangulated

surfaces. Discrete & Computational Geometry 49, 4 (2013), 823–863.

ACM Trans. Graph., Vol. 40, No. 6, Article 252. Publication date: December 2021.

https://flipper.readthedocs.io
https://pypi.python.org/pypi/flipper
https://pypi.python.org/pypi/flipper
http://wrap.warwick.ac.uk/77123/1/WRAP_Thesis_Bell_2015a.pdf
https://arxiv.org/pdf/math/0609447.pdf
https://arxiv.org/pdf/math/0609447.pdf
https://page.math.tu-berlin.de/~bobenko/papers/2007_Bob_Spr.pdf
https://page.math.tu-berlin.de/~bobenko/papers/2007_Bob_Spr.pdf
http://www.pmp-book.org/
http://www.pmp-book.org/
https://kogs-www.informatik.uni-hamburg.de/~tchernia/SR_papers/chew93.pdf
http://diglib.eg.org/bitstream/handle/10.2312/LocalChapterEvents.ItalChap.ItalianChapConf2008.129-136/129-136.pdf
http://www.cs.cmu.edu/~kmcrane/Projects/HeatMethod/paper.pdf
http://www.cs.cmu.edu/~kmcrane/Projects/HeatMethod/paper.pdf
https://hal.inria.fr/inria-00344517/document
https://hal.inria.fr/inria-00344517/document
https://arxiv.org/pdf/2010.01638.pdf
https://jeffe.cs.illinois.edu/pubs/pdf/tracing.pdf
https://jeffe.cs.illinois.edu/pubs/pdf/tracing.pdf

Integer Coordinates for Intrinsic Geometry Processing • 252:13

Benson Farb and Dan Margalit. 2011. A primer on mapping class groups. Princeton

University Press.

Patrick E Farrell, Matthew D Piggott, Christopher C Pain, Gerard J Gorman, and

Cian R Wilson. 2009. Conservative interpolation between unstructured meshes via

supermesh construction. Computer methods in applied mechanics and engineering

198, 33-36 (2009), 2632–2642.

Matthew Fisher, Boris Springborn, Alexander I Bobenko, and Peter Schröder. 2006. An

algorithm for the construction of intrinsic Delaunay triangulations with applications

to digital geometry processing. In ACM SIGGRAPH 2006. 69–74.

Marco Fumero, Michael Möller, and Emanuele Rodolà. 2020. Nonlinear spectral geom-

etry processing via the tv transform. ACM Transactions on Graphics (TOG) 39, 6

(2020), 1–16.

Mark Gillespie, Boris Springborn, and Keenan Crane. 2021. Discrete Conformal Equiv-

alence of Polyhedral Surfaces. ACM Trans. Graph. 40, 4 (2021).

Wolfgang Haken. 1961. Theorie Der Normalflächen: Ein Isotopiekriterium Für Den

Kreisknoten. Acta Math. 105, 3-4 (1961).

Joel Hass and Maria Trnkova. 2020. Approximating Isosurfaces by Guaranteed-quality

Triangular Meshes. Computer Graphics Forum (2020).

Allen Hatcher. 2002. Algebraic Topology. Cambridge University Press.

Yixin Hu, Teseo Schneider, Bolun Wang, Denis Zorin, and Daniele Panozzo. 2020. Fast

tetrahedral meshing in the wild. ACM Transactions on Graphics (TOG) 39, 4 (2020),

117–1.

Yixin Hu, Qingnan Zhou, Xifeng Gao, Alec Jacobson, Denis Zorin, and Daniele Panozzo.

2018. Tetrahedral meshing in the wild. ACM Trans. Graph. 37, 4 (2018), 60–1.

Claude Indermitte, Th M Liebling, Marc Troyanov, and Heinz Clémençon. 2001. Voronoi

diagrams on piecewise flat surfaces and an application to biological growth. Theo-

retical Computer Science 263, 1-2 (2001), 263–274.

Zhongshi Jiang, Teseo Schneider, Denis Zorin, and Daniele Panozzo. 2020. Bijective

projection in a shell. ACM Transactions on Graphics (TOG) 39, 6 (2020), 1–18.

Xiangmin Jiao and Michael T Heath. 2004. Common-refinement-based data transfer

between non-matching meshes in multiphysics simulations. Internat. J. Numer.

Methods Engrg. 61, 14 (2004), 2402–2427.

Hellmuth Kneser. 1929. Geschlossene Flächen in DreidimensionalenMannigfaltigkeiten.

Jahresber. Dtsch. Math.-Ver. 38 (1929).

Felix Knöppel, Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2013. Globally optimal

direction fields. ACM Trans. Graph. 32, 4 (2013).

Dimas Martínez Morera, Paulo Cezar Carvalho, and Luiz Velho. 2008. Modeling on

triangulations with geodesic curves. The Visual Computer 24, 12 (2008), 1025–1037.

Lee Mosher. 1988. Tiling the Projective Foliation Space of a Punctured Surface. Trans.

Amer. Math. Soc. (1988).

Alexander Rand. 2011. Where andHowChew’s SecondDelaunay Refinement Algorithm

Works.. In CCCG.

Rohan Sawhney and Keenan Crane. 2020. Monte Carlo Geometry Processing: A Grid-

Free Approach to PDE-Based Methods on Volumetric Domains. ACM Trans. Graph.

39, 4 (2020).

Marcus Schaefer, Eric Sedgwick, and Daniel Štefankovič. 2002. Algorithms for nor-

mal curves and surfaces. In International Computing and Combinatorics Conference.

Springer, 370–380.

Marcus Schaefer, Eric Sedgwick, and Daniel Stefankovic. 2008. Computing Dehn

Twists and Geometric Intersection Numbers in Polynomial Time.. In CCCG, Vol. 20.

111–114.

Max Schindler and Evan Chen. 2012. Barycentric Coordinates in Olympiad Geometry.

Olympiad Articles (2012), 1–40.

Teseo Schneider, Yixin Hu, Jérémie Dumas, Xifeng Gao, Daniele Panozzo, and Denis

Zorin. 2018. Decoupling simulation accuracy from mesh quality. ACM transactions

on graphics (2018).

Silvia Sellán, Herng Yi Cheng, Yuming Ma, Mitchell Dembowski, and Alec Jacobson.

2019. Solid geometry processing on deconstructed domains. In Computer Graphics

Forum, Vol. 38. Wiley Online Library, 564–579.

Nicholas Sharp and Keenan Crane. 2020a. You can find geodesic paths in triangle

meshes by just flipping edges. ACM Trans. on Graphics (TOG) 39, 6 (2020), 1–15.

Nicholas Sharp and Keenan Crane. 2020b. A Laplacian for Nonmanifold Triangle

Meshes. Computer Graphics Forum (SGP) 39, 5 (2020).

Nicholas Sharp, Mark Gillespie, and Keenan Crane. 2021. Geometry Processing with

Intrinsic Triangulations. (2021).

Nicholas Sharp, Yousuf Soliman, and Keenan Crane. 2019a. Navigating intrinsic trian-

gulations. ACM Trans. on Graphics (TOG) 38, 4 (2019), 1–16.

Nicholas Sharp, Yousuf Soliman, and Keenan Crane. 2019b. The Vector Heat Method.

ACM Trans. Graph. 38, 3 (2019).

Jonathan R Shewchuk. 1997. Delaunay refinement mesh generation. Ph.D. Dissertation.

Carnegie-Mellon Univ School of Computer Science.

Gilbert Strang and George J Fix. 2008. An analysis of the finite element method (2 ed.).

212 (2008).

Jian Sun, Tianqi Wu, Xianfeng Gu, and Feng Luo. 2015. Discrete conformal deformation:

algorithm and experiments. SIAM Journal on Imaging Sciences 8, 3 (2015), 1421–1456.

Ge Xia. 2013. The stretch factor of the Delaunay triangulation is less than 1.998. SIAM

J. Comput. 42, 4 (2013), 1620–1659.

Qingnan Zhou, Eitan Grinspun, Denis Zorin, and Alec Jacobson. 2016. Mesh arrange-

ments for solid geometry. ACM Transactions on Graphics (TOG) 35, 4 (2016), 1–15.

Qingnan Zhou and Alec Jacobson. 2016. Thingi10K: A Dataset of 10,000 3D-Printing

Models. arXiv preprint arXiv:1605.04797 (2016).

A INSERTED VERTEX POSITIONS ON T 0

In Section 3.3, we identify a region R containing an inserted point

x . Each corner of R is either a vertex ofT 1
or a crossing between an

edge ofT 0
and an edge ofT 1

. In the former case, q0 provides the cor-
ner’s position onT 0

, and in the latter caseExtractGeometricCrossing

provides the corner’s position on T 0
. The face abc ∈ F 0 containing

R—and hence the inserted point x—is then identified as the unique

face of T 0
containing all of these corners.

Then we recover barycentric coordinates u for x within face abc
by solving a small linear system. In principle one could use any 3

corners of R to determine the desired barycentric coordinates, but

we make use of all corners of R for numerical stability.

Precisely, let 3 ≤ ρ ≤ 6 denote the number of corners of R. Let
themth

corner of R have barycentric coordinatesu
(m)
a ,u

(m)
b ,u

(m)
c on

abc ∈ F 0 and barycentric coordinates v
(m)
i ,v

(m)
j ,v

(m)
k on ijk ∈ F 1,

all of which are know. We also know the barycentric coordinates vi
for x in ijk . We then want to solve for the corresponding ua on abc .
We proceed in two steps: first, we express v as a linear combination

ξ of the v(m). Then, we apply this same linear combination to the

u(m) to obtain u. Concretely, we first solve for the minimum-norm

solution of the underdetermined system

©«
v
(0)

i v
(1)

i · · · v
(ρ)
i

v
(0)

j v
(1)

j · · · v
(ρ)
j

v
(0)

k v
(1)

k · · · v
(ρ)
k

ª®®®¬
©«
ξ0
ξ1
...

ξρ

ª®®®®¬
=
©«
vi
vj
vk

ª®¬ , (15)

and then set

ua :=
∑
m

u
(m)
a ξm , ub :=

∑
m

u
(m)
b ξm , uc :=

∑
m

u
(m)
c ξm . (16)

Note that while one often seeks a nonnegative ξ , any solution will

suffice here: we only use ξ to interpolate in Equation 16.

ACM Trans. Graph., Vol. 40, No. 6, Article 252. Publication date: December 2021.

http://euclid.nmu.edu/~joshthom/Teaching/MA589/farbmarg.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0045782509001315
https://www.sciencedirect.com/science/article/abs/pii/S0045782509001315
https://page.math.tu-berlin.de/~bobenko/papers/InDel.pdf
https://page.math.tu-berlin.de/~bobenko/papers/InDel.pdf
https://page.math.tu-berlin.de/~bobenko/papers/InDel.pdf
https://arxiv.org/pdf/2009.03044.pdf
https://arxiv.org/pdf/2009.03044.pdf
http://www.cs.cmu.edu/~kmcrane/Projects/CEPS/CEPS.pdf
http://www.cs.cmu.edu/~kmcrane/Projects/CEPS/CEPS.pdf
https://link.springer.com/article/10.1007/BF02559591
https://link.springer.com/article/10.1007/BF02559591
https://diglib.eg.org/bitstream/handle/10.1111/cgf14066/v39i5pp029-040.pdf
https://diglib.eg.org/bitstream/handle/10.1111/cgf14066/v39i5pp029-040.pdf
http://pi.math.cornell.edu/~hatcher/AT/AT.pdf
https://arxiv.org/pdf/1908.03581.pdf
https://arxiv.org/pdf/1908.03581.pdf
https://www.cs.toronto.edu/~jacobson/images/tetrahedral-meshing-in-the-wild-siggraph-2018-compressed-hu-et-al.pdf
https://www.sciencedirect.com/science/article/pii/S0304397500002486
https://www.sciencedirect.com/science/article/pii/S0304397500002486
https://par.nsf.gov/servlets/purl/10190635
https://par.nsf.gov/servlets/purl/10190635
http://www.ams.sunysb.edu/~jiao/papers/datatransfer_ijnme.pdf
http://www.ams.sunysb.edu/~jiao/papers/datatransfer_ijnme.pdf
https://eudml.org/doc/145838
http://www.cs.cmu.edu/~kmcrane/Projects/GloballyOptimalDirectionFields/paper.pdf
http://www.cs.cmu.edu/~kmcrane/Projects/GloballyOptimalDirectionFields/paper.pdf
https://link.springer.com/article/10.1007/s00371-008-0298-9
https://link.springer.com/article/10.1007/s00371-008-0298-9
https://www.ams.org/journals/tran/1988-306-01/S0002-9947-1988-0927683-0/S0002-9947-1988-0927683-0.pdf
http://2011.cccg.ca/PDFschedule/papers/paper91.pdf
http://2011.cccg.ca/PDFschedule/papers/paper91.pdf
http://www.cs.cmu.edu/~kmcrane/Projects/MonteCarloGeometryProcessing/paper.pdf
http://www.cs.cmu.edu/~kmcrane/Projects/MonteCarloGeometryProcessing/paper.pdf
https://www.cs.rochester.edu/~stefanko/Publications/Cocoon'02.pdf
https://www.cs.rochester.edu/~stefanko/Publications/Cocoon'02.pdf
http://ovid.cs.depaul.edu/documents/geometric.pdf
http://ovid.cs.depaul.edu/documents/geometric.pdf
https://web.evanchen.cc/handouts/bary/bary-full.pdf
https://par.nsf.gov/servlets/purl/10080686
https://www.dgp.toronto.edu/projects/deconstructed-domains/solid-geometry-processing-on-deconstructed-domains-cgf-2019-sellan-et-al.pdf
http://www.cs.cmu.edu/~kmcrane/Projects/FlipOut/FlipOut.pdf
http://www.cs.cmu.edu/~kmcrane/Projects/FlipOut/FlipOut.pdf
http://www.cs.cmu.edu/~kmcrane/Projects/NonmanifoldLaplace/NonmanifoldLaplace.pdf
http://www.cs.cmu.edu/~kmcrane/Projects/NonmanifoldLaplace/NonmanifoldLaplace.pdf
https://nmwsharp.com/media/papers/int-tri-course/int_tri_course.pdf
https://nmwsharp.com/media/papers/int-tri-course/int_tri_course.pdf
http://www.cs.cmu.edu/~kmcrane/Projects/NavigatingIntrinsicTriangulations/paper.pdf
http://www.cs.cmu.edu/~kmcrane/Projects/NavigatingIntrinsicTriangulations/paper.pdf
http://www.cs.cmu.edu/~kmcrane/Projects/VectorHeatMethod/paper.pdf
https://www.cs.cmu.edu/~quake-papers/delaunay-refinement.pdf
https://my.siam.org/Store/Product/viewproduct/?ProductId=1218
https://arxiv.org/pdf/1412.6892.pdf
https://arxiv.org/pdf/1412.6892.pdf
https://arxiv.org/pdf/1103.4361.pdf
https://cims.nyu.edu/gcl/papers/zhou2016mas.pdf
https://cims.nyu.edu/gcl/papers/zhou2016mas.pdf
https://arxiv.org/pdf/1605.04797.pdf
https://arxiv.org/pdf/1605.04797.pdf

Integer Coordinates for Intrinsic Geometry Processing • 252:1

Case 1 Case 2 Case 3

Fig. 20. A curve entering triangle jik along edge i j can proceed in 3 ways:

the left-most c ikj crossings go left (left), the rightmost ck ji crossings go

right (right), and the remaining crossings terminate at vertex k (center).
[Reproduced from Figure 7 with a few extra labels for convenience].

Supplemental Material

This supplement provides additional pseudocode for the procedures

described in Section 3 and proofs of correctness.

B PSEUDOCODE

We assume all algorithms have access to triangulations T 0
and T 1

,

their edge lengths ℓ0, ℓ1, the normal coordinates n, the roundabouts
r , and the inserted vertex locations q0i (Section 2).

• local index—the arbitrary counterclockwise ordering of halfedges

of T 0
used in defining the roundabouts, and

• curve segment—a curve on the surface of T 1
which starts and

ends at vertices of T 1
whose interior does not contain any

vertices of T 1
. Any edge ab ∈ E0 corresponds to one or more

curve segments (Section 3.4).

Algorithm 1 TraceFrom(ζ)

Input: Any combinatorial crossing ζ = (
⇀
ij ,p) along some curve

segment γ lying along T 1
.

Output: The subsequent half of γ as a sequence of combinatorial

crossings (ζ0, ζ1, . . . , ζn ,k) alongM , where ζ = ζ0 and k is

the vertex at which γ terminates.

1: currentHalfedge←
⇀
ij

2: γ ← [(currentHalfedge,p)]
3: while True do ▷Walk until the curve terminates at a vertex

4: ▷Let i and j refer the the tail and tip of the current halfedge
5:

⇀
ij ← currentHalfedge

6: k ← OppositeVertex(Twin(currentHalfedge))

7: if p < c
k j
i then ▷Case 3 of Figure 20 (γ goes right)

8: currentHalfedge←
⇀
ik ▷Move to

⇀
ik

9: p ← p
10: Append(γ , (currentHalfedge,p))

11: else if p ≥ ni j − c
ik
j then ▷Case 1 of Figure 20 (γ goes left)

12: currentHalfedge←
⇀
kj ▷Move to

⇀
kj

13: p ← nk j + p − ni j
14: Append(γ , (currentHalfedge,p))
15: else ▷Case 2 of Figure 20 (γ ends at k)
16: return (γ ,k)

Fig. 21. We trace a curve γ by first unfolding a triangle strip in the plane,

then intersecting a straight line with each interior edge. Since normal coor-

dinates encode all crossings, this line is guaranteed to be contained in the

strip. [Reproduced from Figure 8 for convenience].

Algorithm 2 ExtractCurve(ζ)

Input: Any combinatorial crossing ζ along a curve segment γ
Output: The trajectory of γ as a sequence of geometric crossings

(a, z0, z1, . . . , zn ,b) alongM between vertices a,b ∈ V 1
.

1: γ
front
,b ← TraceFrom(ζ) ▷Trace forwards along γ

2: γ
back
,a ← Reverse(TraceFrom(ζ)) ▷Trace backwards

3: γ
Combinatorial

← Append(γ
back
,γ

front
)

4: ▷Use roundabouts to identify corresponding halfedge
⇀
cd ∈ H0

5:

⇀
cd ← IdentifyTracedEdge(γ

Combinatorial
) ▷(Algorithm 3)

6: ▷Compute positions in R2 for the triangle strip containing γ
7: µ ← LayOutTriangleStrip(γ

Combinatorial
)

8: γGeometric ← []

9: ▷Barycentric coordinates of γ ’s endpoints along halfedge
⇀
cd

10: uStart← BarycentricCoordinateAlongEdge(q0a ,
⇀
cd)

11: uEnd← BarycentricCoordinateAlongEdge(q0b ,
⇀
cd)

12: for ζ = (⇀ij ,p) ∈ γ
Combinatorial

do
13: ▷Find the intersection of ab and ij in the plane (Figure 21)

14: ũ,v ← IntersectionBarycentric(µa , µb , µi , µ j)
15: ▷Interpolate endpoint coordinates

16: u ← (1 − ũ) · uStart + ũ · uEnd
17: Append(γGeometric, z = (

⇀
ij,p,
⇀
cd ,u,v))

18: return (a,γGeometric,b),γCombinatorial

Algorithm 3 IdentifyTracedEdge(a, ζ0, ζ1, . . . , ζn ,b)

Input: The combinatorial crossings of a curve segment γ traced

along T 1
between vertices a,b ∈ V 1

.

Output: The halfedge⇀ab of T 0
to which γ corresponds.

1: ▷If the input segment does not represent an entire edge ofT 0
, walk

back until we find the beginning

2: while a < V 0 do
3: ▷amay only have two crossings adjacent to it—see Algorithm 4

4: ζ ← other crossing emanating from a

5: (a, ζ0, . . . ,b) ← ReverseList(TraceFrom(ζ))

6: (
⇀
ij ,p) ← ζ0

7: ▷Use roundabouts to determine the appropriate edge of T 0

8:

⇀
aj ← Next (Next (

⇀
ij))

9: k ← r⇀
aj + (p − c

ja
i) + n

−
aj ▷Local index of output halfedge

10: return HalfedgeFromLocalIndex(a,k)

ACM Trans. Graph., Vol. 40, No. 6, Article 252. Publication date: December 2021.

252:2 • Gillespie, Sharp, and Crane

2

0
3

2

2

3

Fig. 22. In SplitFace, we do a sequence of line-side tests to compute a value

of ν at each corner.

Algorithm 4 ExtractEdge(ab)

Input: An edge ab ∈ E0

Output: The entire trajectory of ab as a sequence of geometric cross-

ings (a, z0, z1, . . . , zl ,b) along M . If the trajectory consists

of multiple curve segments, this sequence will also include

some inserted vertices i ∈ V ⋆
in the middle.

1: ▷Use roundabouts to find halfedge
⇀
ai ∈ H1

just preceding
⇀
ab ∈ H0

2: k ← local index of
⇀
ab about vertex a

3: if r⇀
ai>k for all halfedges

⇀
ai leaving vertex a then

4: ▷Break ties in favor of farthest halfedge counterclockwise

5:

⇀
ai ← argmax⇀

ai {r
⇀
ai }

6: else
7:

⇀
ai ← argmax⇀

ai {r
⇀
ai : r⇀

ai ≤ k} ▷Break ties similarly

8: if r⇀
ai = k and nai = −1 then ▷Shared edge

9: return⇀ai
10: else
11:

⇀
ij ← Next(

⇀
ai)

12: p ← k + nai − r⇀
ai

13: γ ← ExtractCurve(
⇀
ij ,p)

14: ▷If γ does not end at a vertex of V 0
we must keep tracing

15: while γ does not end at a vertex of V 0 do
16: i ← endpoint of γ
17: ▷Our curves only pass through vertices inserted via edge

splits. Hence, there is a unique other crossing ζ emanating from i
that we must trace along

18: ζ ← other crossing emanating from i
19: (i, z1, . . . , zs , j) ← ExtractCurve(ζ)
20: Append(γ , (z1, . . . , zs , j))

21: return γ

Algorithm 5 SplitFace_Case1(ijk,u)

Input: The location to insert a vertex on T 1
, as barycentric coordi-

nates u in a face ijk ∈ F 1.

Output: An updated integer coordinate intrinsic triangulation.

1: ▷Gather all geometric crossings

2: for ζ = (⇀ij ,p) ∈ CombinatorialCrossings(ijk) do
3: z⇀

i j [p + 1] ← ExtractGeometricCrossing(ζ)

4: ▷Compute new normal coordinates

5: for jk
i ∈ CornersOf(ijk) do ▷for each corner

6: ▷Identify which corner curves, if any, contain u

7: 𝒞i ←
{
ξ : 0 ≤ ξ < c

jk
i ,u ∈ Triangle (i, z

⇀
i j [ξ], z⇀

ik [ξ])
}

8: νi ← min

(
c
jk
i ∪ 𝒞i

)
▷Take the closest such corner

9: σi ← c
jk
i − νi ▷“Slack” left at corner

10: ▷In exact arithmetic, only one σi may be nonzero. In floating point

multiple could be nonzero, so we keep the biggest and round the

others to zero

11: if σi ≥ σj ,σk then
12: σj ,σk ← 0, 0

13: else if σj ≥ σk ,σi then
14: σk ,σi ← 0, 0

15: else if σk ≥ σi ,σj then
16: σi ,σj ← 0, 0

17: for jk
i ∈ CornersOf(ijk) do ▷include slack crossings

18: nmi ← νi + σj + σk

19: ▷Compute everything else

20: r ← UpdateRoundabouts(nmi ,nmj ,nmk , r) ▷Equation 4

21: ℓ1mi , ℓ
1

mj , ℓ
1

mk ← UpdateEdgeLengths(ℓ1,u) ▷Equation 5

22: R ← RegionFromNormalCoordinates(nmi ,nmj ,nmk)

23: q0m ← RecoverBarycentric(R, z,u) ▷Appendix A

Algorithm 6 SplitFace_Case2(ijk,u)

Input: The location to insert a vertex on T 1
, as barycentric coordi-

nates u in a face ijk ∈ F 1. In Case 1, ijk must be oriented so

that ni j ≥ njk + nki
Output: An updated integer coordinate intrinsic triangulation.

1: ▷Gather all geometric crossings

2: for ζ = (⇀ij ,p) ∈ CombinatorialCrossings(ijk) do
3: z⇀

i j [p + 1] ← ExtractGeometricCrossing(ζ)

4: ▷Compute new normal coordinates

5: for jk
i ∈ CornersOf(ijk) do ▷for each corner

6: ▷Identify which corner curves, if any, contain u

7: 𝒞i ←
{
ξ : 0 ≤ ξ < c

jk
i ,u ∈ Triangle (i, z

⇀
i j [ξ], z⇀

ik [ξ])
}

8: νi ← min

(
c
jk
i ∪ 𝒞i

)
▷Take the closest such corner

9: σi ← c
jk
i − νi ▷“Slack” left at corner

10: ▷Note that νk = σk = 0

11: if σi ≥ σj then ▷Ensure that at most one σ is nonzero

12: σj ← 0

13: else if σj ≥ σi then
14: σi ← 0

15: ▷Check for intersections with emanating edges

16: if νi < c
jk
i then ▷In corner i

17: νj ← νj + e
i j
k

18: else if νj < ckij then ▷In corner j

19: νi ← νj + e
i j
k

20: else ▷In middle of fan region

21: ▷Identify which emanating curves, if any, contain u

22: ℰk ←
{
ξ : 0 ≤ ξ < e

i j
k ,u ∈ Triangle

(
i, z⇀

i j [ξ + c
jk
i],k

)}
ACM Trans. Graph., Vol. 40, No. 6, Article 252. Publication date: December 2021.

Integer Coordinates for Intrinsic Geometry Processing • 252:3

23: ϵk ← min

(
e
i j
k ∪ ℰk

)
▷Take the curve closest to i

24: νi ← νi + ϵk ▷Edgemi crosses the first ϵk such curves

25: νj ← νj + e
jk
i − ϵk ▷Edgemj crosses the rest

26: for jk
i ∈ CornersOf(ijk) do ▷include opposite corners

27: nmi ← νi + σj + σk

28: ▷Compute everything else

29: r ← UpdateRoundabouts(nmi ,nmj ,nmk , r) ▷Equation 4

30: ℓ1mi , ℓ
1

mj , ℓ
1

mk ← UpdateEdgeLengths(ℓ1,u) ▷Equation 5

31: R ← RegionFromNormalCoordinates(nmi ,nmj ,nmk)

32: q0m ← RecoverBarycentric(R,Z ,u) ▷Appendix A

Algorithm 7 SplitEdge(
⇀
ij ,u)

Input: The location to insert a vertex on T 1
, as barycentric coordi-

nates u on a halfedge
⇀
ij ∈ H1

Output: An updated integer coordinate intrinsic triangulation

1: if ni j ≥ 0 then
2: k ← OppositeVertex(

⇀
ij)

3: SplitFace(ijk, (ui ,uj , 0))
4: FlipEdge(ij)
5: else
6: k ← OppositeVertex(

⇀
ij)

7: if InInterior(ij) then
8: l ← OppositeVertex(

⇀
ji)

9: T 1 ← insert a vertexm along ij ▷Update combinatorics

10: nmj ,nmi ← ni j ,ni j ▷Compute new normal coordinates

11: nmk ← max(nki ,njk , 0)
12: ▷Compute everything else

13: r ← UpdateRoundabouts(nmi ,nmj ,nmk ,nml , r) ▷Equation 4

14: ℓ1mi , ℓ
1

mj , ℓ
1

mk , ℓ
1

ml ← UpdateEdgeLengths(ℓ1,u) ▷Equation 5

15: q0m ← uiq
0

i + ujq
0

j

Algorithm 8 RemoveVertex(i)

Input: An inserted vertex i

Output: Updated triangulation i removed

1: while i has degree > 3 do
2: ij ← flippable edge incident on i
3: FlipEdge(ij)

4: DeleteVertexAndIncidentEdges(i)

Algorithm 9 ComputeCommonSubdivision()

Input: Nothing beyond the usual data (i.e. T 0,T 1, . . .)

1: ▷Index common subdivision vertices

2: ℐv ← index common subdivision vertices

3: ▷Compute connectivity

4: polygons← []

5: for ijk ∈ F 1 do ▷Always orient such that ni j ≥ njk ,nki

6: if ei jk = 0 then
7: Append(polygons, SubdivideFace_Case1(ijk,ℐv))
8: else
9: Append(polygons, SubdivideFace_Case2(ijk,ℐv))

10: ▷Compute intersection geometry. We denote the locations on T 0

by Q0
and the locations on T 1

by Q1

11: for i ∈ V 1 do ▷Vertices of T 1

12: k ← ℐvi ▷Index of vertex in S

13: Q0

k ← q0i ▷Location on T 0
computed when i was inserted

14: Q1

k ← (i, 1) ▷Location on T 1
is just i itself

15: for ab ∈ E0 do ▷Edge intersections

16: γ = (a, z1, . . . , zl ,b) ← ExtractEdge(ab)
17: for z = (⇀ij,p,⇀ab,u,v) ∈ γ do
18: k ← ℐv⇀i j [p + 1] ▷Index of crossing in S
19: Q0

k ← (
⇀
ab,u) ▷Position on T 0

along
⇀
ab

20: Q1

k ← (
⇀
ij ,v) ▷Position on T 1

along
⇀
ij

21: return polygons,Q0,Q1

Algorithm 10 DelaunayRefinement(θmin)

Input: A minimum allowed angle θmin .

Output: An intrinsic triangulation T 1
whose corner angles are all at

least θmin
1: FlipToDelaunay()

2: while T 1
has triangles with angles less than θmin do

3: ijk ← any triangle with an angle less than θmin

4: ▷Find the circumcenter via the exponential map

5: vc ← circumcenter barycentric coordinates ▷Equations 9,

10

6: ▷Barycentric coordinate offset from barycenter to circumcenter

7: δvc ← vc − (1/3, 1/3, 1/3)
8: ▷Transform offset to face tangent space

9: V ← BarycentricOffsetToTangentVector(δvc)
10: ▷Evaluate exponential map from face barycenter

11: c ← Exp(Barycenter(ijk),V)
12: if c lies inside the mesh then
13: InsertCircumcenter(ijk)
14: else
15: lm ← boundary edge separating c from ijk
16: m ← SplitEdge(lm, 0.5)
17: ▷Must flip to Delaunay before computing Dijkstra ball

18: FlipToDelaunay()

19: ▷Remove inserted vertices from lm’s diametral ball

20: ball = {i ∈ V 1
: DijkstraDistance(E1, i,m) < ℓlm }

21: for i ∈ ball do
22: RemoveVertex(i)

23: FlipToDelaunay()

ACM Trans. Graph., Vol. 40, No. 6, Article 252. Publication date: December 2021.

252:4 • Gillespie, Sharp, and Crane

C DELAUNAY REFINEMENT DETAILS

C.1 Removing Extra Vertices

WhenChew’s second algorithm splits an edge, it removes all inserted

circumcenters within a geodesic ball centered at the edge’s midpoint.

These vertices must be removed, but it is okay to removes additional

interior inserted vertices. Shewchuk [1997, Section 3.4.2] observes

that the algorithm can only perform finitely many edge splits. As

long as one removes all interior inserted vertices within the geodesic

ball—and never removes vertices along the boundary—the algorithm

will still perform only finitely many edge splits. Hence, it must

terminate as usual following the final edge split, even if one removes

extra circumcenters during edge splits.

C.2 Proof of Correctness on Watertight Meshes

Here we seek to prove that DelaunayRefinement (Algorithm 10)

succeeds, in the basic case of a closed surface with bounded cone

angles. We will not prove the more general boundary case here, but

experimentally we observe success on a large dataset (Section 6.1).

TheoremC.1 (Delaunay refinement, no boundary). Onmeshes

without boundary, with vertex angle sums at least 60
◦
, Algorithm 10

produces a Delaunay mesh with triangle corner angles at least 30
◦
.

Proof. By definition, DelaunayRefinement only terminates

when the triangulation is a Delaunay triangulation which satisfies

the angle bound, so we just need to prove that termination occurs

after a finite number of iterations. We will show this by establishing

thatDelaunayRefinementmaintains a minimum spacing between

all vertices in the mesh, so the number of insertions is bounded by

surface area. Our argument will generally follow the planar proof

of Shewchuk [1997, Section 3.2.1], though extra care is needed in

the intrinsic case, where self edges may connect a vertex to itself.

In particular, we consider the length of the shortest edge in the

initial mesh’s intrinsic Delaunay triangulation, δ := mini j ℓi j . We

will show that the minimum edge length in each subsequent Delau-

nay triangulations is at least δ . Then all vertices must be separated

by a distance at least δ , since Lemma C.3, each vertex is connected to

its geodesic nearest neighbor. Hence, each vertex is contained in an

open disk of radius
1

2
δ which is disjoint from all other disks. As the

input mesh has finite surface area, we conclude that Algorithm 10

can only insert finitely many vertices, and thus must terminate.

It remains to show that DelaunayRefinement never creates an

edge of length less than δ . It is convenient to convert the angle

bound α to a circumradius-to-shortest-edge ratio bound B = 1

2 sinα
[Shewchuk 1997, Section 3.1]. Having corner angles at least α = 30

◦
,

is equivalent to a circumradius-to-shortest-edge ratio of at most

B = 1, and thus we insert the circumcenters of triangles with B > 1.

We proceed by induction. All initial edges have length at least δ
by definition. Now consider inserting vertex i at the circumcenter of

triangle jkl with circumradius R. Since we only split triangles with

B > 1, and jkl ’s edges have length at least δ , we must have R > δ .
By Lemma C.4 all new edges in the Delaunay triangulation must

be incident on i , and since jkl had an empty geodesic circumcircle,

there can be no other vertices within distance R > δ . Thus new all

edges to other vertices have length at least δ . We must now consider

self edges connecting the new vertex i to itself.

Gluing together the two ends of a self edge yields a loop; we will

split into cases based on the homotopy class of this loop on the

punctured surface (before the insertion of i). First, note that the loop
cannot be contractible to a point, since the original edge is geodesic.

Then we will split in to two cases: either the loop contracts around

a single vertex, or it does not.

If the loop contracts around a single vertex, then

the self edge encloses a degree-1 vertex. The degree-

1 vertex must have distance at least R to the inserted

vertex, and has angle sum at least 60
◦
. Thus, by the

law of cosines, the length of the self edge must be

at least √
R2 + R2 − 2R2 cosθ = R

√
2(1 − cosθ).

Since cos 60
◦ = 1

2
, and 1 − cosθ is increasing with

θ , this shows that the self edge has length at least

R whenever θ is at least 60
◦
.

If the loop is not in a homotopy class contractible

about a single vertex, then the shortest loop γmin

in the homotopy class is non-constant. By Lemma C.5, we can take

γmin to touch some vertex a, and note that since γmin is the shortest

loop our original self edge must be at least as long as γmin . Then by

Lemma C.3 a has an edge at least a long as γmin , and thus the self

edge has length ≥ |γmin | ≥ δ .
Thus, we conclude that Algorithm 10 never introduces an edge

of length less than δ , which means that it must terminate after

inserting finitely many vertices. □

Lemma C.2. For any pair of vertices i, j ∈ V , let Γi j be the set of
non-constant geodesics connecting i to j. Then

di j := inf

γ ∈Γi j
length(γ) > 0.

Proof. This follows directly from [Indermitte et al. 2001, Propo-

sition 1], which states that for any L > 0, the number of geodesic

arcs from i to j of length at most L is finite. Since any geodesic of

length 0 is constant, and thus not in Γi j , this implies that di j > 0. □

Lemma C.3. For any vertex i ∈ V , the intrinsic Delaunay triangu-

lation contains an edge to i’s nearest neighbor.

Proof. This is a standard result, which we include for complete-

ness. Let j be i’s nearest neighbor, i.e. j := argminjdi j . Note that
j may equal i , and di j > 0 by Lemma C.2. Consider the disk D of

radius di j centered at i . Since j is i’s nearest neighbor, D contains no

vertex other than i . Thus, the circle which goes through i and j and
is tangent to D at j has empty interior, and its boundary contains no

vertices other than i and j. We conclude that ij is in the Delaunay

triangulation [Bobenko and Springborn 2007, Definition 3]. □

Lemma C.4. All edges created in DelaunayRefinement following

the insertion of a vertex i and flipping to Delaunay are incident on i .

Proof. Again, we follow the planar proof of Shewchuk [1997,

Lemma 12]. We wish to prove that all Delaunay edges which are not

incident on i were Delaunay before inserting i . This follows from
the fact that edges of a Delaunay triangulation satisfy an empty

circumcircle condition [Bobenko and Springborn 2007, Definition

ACM Trans. Graph., Vol. 40, No. 6, Article 252. Publication date: December 2021.

Integer Coordinates for Intrinsic Geometry Processing • 252:5

3]. If an edge’s circumcircle is empty after inserting vertex i , it must

have been empty before too, so the edge was already Delaunay. □

Lemma C.5. Any geodesic loop γ is isotopic to a geodesic loop γ ′ of
the same length which touches a vertex.

Proof. γ can “slide” until it touches a vertex without changing

its length. Precisely, consider a unit-speed motion of γ within the

surface along its outward normal direction. During the motion,

d
dt |γ | =

∫
γ κ(s) ds , where κ is the geodesic curvature of γ . Since γ is

a geodesic, κ = 0: its length does not change. Thus we can construct

γ ′ by sliding γ along the surface until it touches a vertex. □

As an aside, we note that geodesic loops which do not touch a

vertex only occur in non-generic configurations.

D SIMPLICIAL VERTEX REMOVAL

In Section 3.5, we consider removing a vertex by flipping edges until

the vertex has degree three and then deleting it. Past work has also

proposed this approach in the purely-topological setting [Schaefer

et al. 2002, Section 5.4], but here we must respect geometric con-

straints. In particular, edges can only be flipped geometrically if they

are contained in a convex quadrilateral (Section 3.2). Here we prove

that flipping edges to remove vertices is indeed a viable strategy in

the Euclidean setting as well: one can always find an edge to flip.

Theorem D.1 (Vertex Removal, simplicial). If a vertex i in a

simplicial complex has cone angle 2π and degree d > 3, then some

edge ij incident on i can be flipped to decrease the degree of i .

Proof. Recall that an edge can be flipped if both endpoints will

have degree at least 1 after the flip, and the edge is contained in a

convex quadrilateral (Section 3.2). As always, the convex quadri-

lateral is defined in the sense of the intrinsic geometry determined

by edge lengths. The endpoint degree constraint is automatically

satisfied on a simplicial complex, so we only need to show that the

geometric convexity constraint is satisfied, which is equivalent to

showing that all angles of the edge’s quadrilateral are at most π .
Denote the neighboring vertices of i as jk , with jk+1 etc. implicitly

indexed modulo the vertex degree d (Figure 23). The outer angles

∠i jk−1 jk and ∠i jk+1k are corners of Euclidean triangles, and thus are

necessarily at most π , so we need to find an edge ijk for which the

angles ∠jk−1i jk+1 and ∠jk+1 jk jk−1 are also at most π .
First we consider the inner corners ∠jk−1i jk+1 . At most two of

these angles can be greater than π . To see why, suppose there were

three ∠jk−1i jk+1 > π . Since the degree of i is d > 3, then some pair

Fig. 23. The relevant angles for Theorem D.1.

of those three large angles would correspond to disjoint angular

sectors around the vertex, and summing their angles yields a value

greater than 2π , which is impossible because the angle sum of i is
2π . Thus all but at most two of the edges incident on i have inner
corners with angle at most π .

Likewise, at least three of the outer corners ∠jk+1 jk jk−1 are at most

π . This is because the sum of all d outer corners must be (d − 2)π .
Since they are nonnegative, at most d − 3 of them can be strictly

greater than π , implying that at least 3 will be π .
Thus at least three outer corners are at most π , and at most two

of the inner corners are not at most π , so there must be at least one

edge for which both the inner and outer corners are at most π . This
edge can then be flipped, reducing the vertex degree. □

Importantly, this proof does not handle the full general case of a

∆-complex, where there may exist self-edges which cause flips to

not make progress. However, we note that Sharp and Crane [2020a,

Appendix A] proves that a similar flip-removal strategy works in the

case of a ∆-complex, and we conjecture that an analogous technique

could be applied to generalize Theorem D.1. Also, note that the

“equality” case of Theorem D.1 is a possibility, such as a degree

four cross configuration where all angles = π/2. Fortunately the

resulting skinny triangle after the edge is a non-issue, because the

center vertex is about to be removed.

Received January 20XX

ACM Trans. Graph., Vol. 40, No. 6, Article 252. Publication date: December 2021.

	Abstract
	1 Introduction and Related Work
	2 Data Structure
	2.1 Connectivity
	2.2 Geometry
	2.3 Normal Coordinates
	2.4 Roundabouts
	2.5 Crossings

	3 Algorithms
	3.1 Extracting Curves
	3.2 Edge Flip
	3.3 Face Split
	3.4 Edge Split
	3.5 Vertex Removal
	3.6 Moving Inserted Vertices
	3.7 Common Subdivision
	3.8 Visualization
	3.9 Robust Implementation
	3.10 Other Operations

	4 Retriangulation and Transfer
	4.1 Intrinsic Delaunay Triangulations
	4.2 Intrinsic Delaunay Refinement
	4.3 Attribute Transfer

	5 Applications
	5.1 PDE-Based Geometry Processing
	5.2 Flip-Based Geodesic Paths

	6 Evaluation
	6.1 Robustness

	7 Limitations and Future Work
	8 Acknowledgments
	References
	A Inserted Vertex Positions on T0
	B Pseudocode
	C Delaunay Refinement Details
	C.1 Removing Extra Vertices
	C.2 Proof of Correctness on Watertight Meshes

	D Simplicial Vertex Removal

