Discrete Conformal Structures and

Hyperbolic Geometry Mark Gillespie



Conformal Maps
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- Conformal maps preserve angles




Conformal Maps

- Conformal maps preserve angles

Conformal Not Conformal



Conformal Maps

» Conformal maps are specified by conformal scale factors u: M — I
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Conformal Maps

* Infinitesimally, conformal maps look like rotations and isotropic scalings

df(X) = sRX for some rotation matrix R and scalar s




Discrete Conformal Maps (Definition 1)

» Specify a scale factor at each vertex

» Rescale edge lengths by

~/

_ (u4u)/2
r j=e z/”ij
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Aside: Regge Calculus

» Lays out a lot of discrete differential

II. NUOVO CIMENTO Vor. XIX, N. 3 1o Febbraio 1961
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General Relativity without Coordinates.

T. REGGE
Palmer Physical Laboratory, Princeton University - Princeton, N.J. (*)

(ricevuto il 17 Ottobre 1960)

L}
. Summary. — In this paper we develop an approach to the theory of
Riemannian manifolds which avoids the use of co-ordinates. Curved
spaces are approximated by higher-dimensional analogs of polyhedra.

Among the advantages of this procedure we may list the possibility of
condensing into a simplified model the essential features of topologies
like Wheeler's wormhole and a deeper geometrical insight.

defect o

In this section we shall first deseribe our approach for the simple case of
2-dimensional manifold (surfaces). Following ALEKSANDROV (1) we develop the
theory of intrinsic curvature on polyhedra. A general surface is then consi-
dered as the limit of a suitable sequence of polyhedra with an increasing
number of faces. A rigorous definition of limit is not given here since it would
involve a treatment of the topology on the set of all polyhedra and this would

carry us too far. It is to be expected however that any surface can be ar-

. — n bitrarily approximated, as closely as wanted, by a suitable polyhedron. The

approximation will be bad if we look at the details to the picture but an ob-

server looking at the broad details only will find it quite satisfactory. On

any surface we can define an integral Gaussian eurvature by carrying out cur-
vature experiments with geodesic triangles.

Let ¢ be one such a triangle and let «, §, ¥ be its internal angles. If the
geometry inside the triangle is not euclidean we have in general a+f4y # x.

(') Nov at the University, Torino.
(1) P. S. ALEKSANDROV: Topologia combinatoria (Torino, 1957).

« Cone metrics

1. Regge, “General Relativity without Coordinates” (1961)



A Conformal Flattening Algorithm

. Specify a target curvature K; at
each vertex

2. Iteratively update the lengths

using conformal scale factors
U, = K — K.
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SPRINGBORN, SCHRODER, PINKALL, “Conformal Equivalence of Triangle Meshes” (2008)



A Conformal Flattening Algorithm

* Problem: sometimes this rescaling
breaks your mesh

f £ One can show that the broduct of two
conformal transformations (40) such that
each separately preserves these constraints
is a transformation which in general will
violate the constraints. [herefore, globally the
group property is violated. Furthermore, no'
subset of the transformations (40) forms a

group”.
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Mobius Transformations

az + b

- Complex functions of the form  f(z) =
cz+d

« Note that If ad = be, then

az+b claz+b) caz+ad a

f2) = cz+d c(cz + d)  ccz+cd T e

* We disallow this

¢ Remark: we can scale all coefficients



Mobius Transformations are Projective

az + b

cz + d

* Homogeneous coordinates
<—.—>




Complex Projective Space

» Just like real projective space

(21, 2] ~ [Azy, 42]

* What shape Is It/
- Let's look at RP! first: [x;, xy] ~ [sx;, sx;]
» Every vector has a canonical form [x,1]

» Except 11,0] - point at infinity



Complex Projective Space

» Similarly, complex vectors look like [z,1]

CP!




Aside: Bloch Sphere

. ([:Plis also the state space of a gbit

» gbits live In 2-state quantum systems, 1.e. (]:2

» But we normalize and ignore phase

» gbits evolve In time by Mébius transformations!




Mobius Transformations

az+ b

f(z) = ad # bc

cz+d

»+ 4 complex degrees of freedom, | complex constraint

+ Determined by 3 points



Complex Cross Ratios

- Consider 4 points a, b, c,d, € C
* Pick @ so that
@p(a) =0, @) =1, ¢(c)=0

« We define [a, b;c,d]¢ := ¢(d)



Length Cross Ratios

» Some computation reveals that

| (b—a)d—c
[a,b,c,d]C——(b_C)(d 2 \

» We define the length cross ratio by

(b —a)d - c)

la,b;c,d] = | ——————
(b —c)d—a)




Length Cross Ratios

» Some computation reveals that

| (b—a)d—c
[a,b,c,d]C——(b_C)(d 2 \

» We define the length cross ratio by

(b —a)d - c)

la,b;c,d] = | ——————
(b —c)d—a)




Length Cross Ratios

» A map Is conformal If and only If its derivative preserves length
Cross ratios

» Easy direction: the derivative of a conformal map Is a rotation and
scaling - these preserve length cross ratios



Discrete Conformal Maps (Definition 2)

* We can associate length cross
ratios with the edges of a triangle
mesh 5 . l].k

Cij — T

» Discrete conformal equivalence

means having the same cross

ratios



Hyperbolic Geometry



The Hyperbolic Plane

» [he hyperbolic plane I1s a 2D surface, but 1t is so big that you can't fit
t into R

* We study 1t through “models”




The Hyperbolic Plane

» (Characterization: Gaussian curvature -1 everywhere

* \What I1s Gaussian curvature!




The Hyperbolic Plane

» Curvature -1 => wrinkly



* Hyperbolic plane squished Iinto unit disk




Poincaré Disk

» Rigid transformations - Mobius transformations which take the disk

to Itself! z—a
f(z) =1
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Ideal Hyperbolic Triangles

» |deal points - points on boundary

* Infinite perimeter; finite area

» All congruent




The Halfspace Model

* [here s a conformal map from the disk to the upper half-plane




The Halfspace Model

* [here s a conformal map from the disk to the upper half-plane

b

2
> lldxi]

ds )2

Horizontal slices look Euclidean
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ldeal Triangles in the Halfspace Model

» |deal points - points on boundary

* Infinite perimeter; finite area

» All congruent

AN I~



» Straight lines are straight lines

* Angles are wonky




The Klein Model

» What are the rigid transtormations of the Klein model!
» [ hey must map straight lines to straight lines

* (Real) projective transtormations
* [ hey must preserve the unit circle

» Clircle-preserving projective maps



The Klein Model

» Any tuclidean triangle Is also a triangle in the Klein model

» But their sides are infinrtely long




The Klein Model

» [here's a unique rigid motion
between any 2 Klein triangles

» [t must be a projective map

* [he coefficients are the
conformal scale factors!



ldeal Hyperbolic Polyhedra

* We can glue Ideal triangles
together into i1deal polyhedra

» [here’'s more than one way to
olue a pair of triangles




ldeal Hyperbolic Polyhedra

* 4 points cocircular: real cross ratio

» tquals length cross ratio
(Up to sign)

» 4th point determined by cross ratio



ldeal Hyperbolic Polyhedra

» An ideal hyperbolic polyhedron is specified
by a length cross ratio per edge

* Rigid transformations of hyperbolic
polyhedra preserve the length cross ratios
at edges
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Hyperbolic Edge Lengths

* tdge lengths are convenient

» By cutting off the infinite ends of
the lines, we obtain finite lengths

» "Decorated’ ideal triangle

» What happens If we pick a
different horocycle!?




Hyperbolic Edge Lengths

* Horocycles around Infinity are ok
horizontal (Euclidean) planes

» Picking a different horocycle shifts
the plane - changes lengths by a
constant




Hyperbolic Edge Lengths

» Changing horocycles doesn't

» [his is twice the (log of the)
length cross ratio!

oAil2 a2

(Y = —
elljklz 6/115/2




Hyperbolic Edge Lengths

» Given a mesh, set hyperbolic lengths

» [hen a conformal rescaling

~J)

£ =e"t¢ . looks like

~y

A’ij — /11] + l/li + I/l]

» [his s just changing your horocycles!



Hyperbolic Edge Lengths

Halfspace Poincaré Disk Klein Disk




Discrete Conformal Equivalence

» [wo triangle meshes are discretely

conformally equivalent If they have
the same hyperbolic metric
* [his Is equivalent to both
earlier definrtions!



Discrete Uniformization



Conformal Rescaling Can Break Meshes

Furthermore, no subset of the [discrete
conformal]| transformations forms a group”.

M. Rocek, RM. Williams,
“The Quantization of Regge Calculus™ (1984)




Hyperbolic Edge Flips

» "Degenerate’” meshes still define
hyperoolic polyhedra

» We can Tix degenerate meshes by K
performing hyperbolic edge flips /

« Still conformal




Hyperbolic Edge Flips

» Fact:We can always flip to valia
tuclidean edge lengths

sphere-inscribed ideal hyperbolic polyhedra
polyhedra _

» Hyperbolic Delaunay

triangulation




Texture Interpolation with Hyperbolic Maps

* rlattening gives us more than just vertex data

» [here's a hyperbolic iIsometry between the
plane and our surface

» Better interpolation




What Do Hyperbolic Edge Flips Look Like!?

» An edge Is a straight line between vertices

* [hey can be weird and bendy




ith Hyperbolic Edge Flips™
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» How do you put them in H>?

[ he polyhedra are given Intr
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» Conformal flattening




