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Conformal
Maps

Conformal Maps



• Conformal maps preserve angles
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• Conformal maps preserve angles

Conformal Maps

Conformal Not Conformal



• Conformal maps are specified by conformal scale factors

Conformal Maps

e2u(p)gp = g̃p

u : M → ℝ
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• Infinitesimally, conformal maps look like rotations and isotropic scalings

Conformal Maps

df(X)

X f

df(X) = sRX for some rotation matrix R and scalar s



• Specify a scale factor at each vertex

• Rescale edge lengths by

Discrete Conformal Maps (Definition 1)

ℓ̃ij = e(ui+uj)/2ℓij

M. Roček, R.M. Williams, “The Quantization of Regge Calculus” (1984)



• Lays out a lot of discrete differential 
geometry

• Gaussian curvature as angle 
defect

• Gauss-Bonnet

• Cone metrics

Aside: Regge Calculus

T. Regge, “General Relativity without Coordinates” (1961)



1. Specify a target curvature     at 
each vertex

2. Iteratively update the lengths 
using conformal scale factors

A Conformal Flattening Algorithm

K̃i

ui = K̃i − Ki

SPRINGBORN, SCHRÖDER, PINKALL, “Conformal Equivalence of Triangle Meshes” (2008)



• Problem: sometimes this rescaling 
breaks your mesh

A Conformal Flattening Algorithm

One can show that the product of two 
conformal transformations (40) such that 
each separately preserves these constraints 
is a transformation which in general will 
violate the constraints. Therefore, globally the 
group property is violated. Furthermore, no' 
subset of the transformations (40) forms a 
group”.

“ 

M. Roček, R.M. Williams, 
“The Quantization of Regge Calculus” (1984)



Möbius Transformations



• Complex functions of the form

• Note that if           , then 

• We disallow this

• Remark: we can scale all coefficients

Möbius Transformations

f(z) =
az + b
cz + d

ad = bc

f(z) =
az + b
cz + d

=
c(az + b)
c(cz + d)

=
caz + ad
ccz + cd

=
a
c



• Homogeneous coordinates

Möbius Transformations are Projective

(az + b
cz + d) = (a b

c d) (z
1)

ℝ10
ℝP1
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• Just like real projective space

• What shape is it?

• Let’s look at         first:

• Every vector has a canonical form

• Except        - point at infinity

Complex Projective Space

[z1, z2] ∼ [λz1, λz2]

ℝP1 [x1, x2] ∼ [sx1, sx2]

[x,1]

[1,0]

0

∞



• Similarly, complex vectors look like

Complex Projective Space

[z,1]
∞

0
ℂ1

ℂP1



•         is also the state space of a qbit
• qbits live in 2-state quantum systems, i.e.

• But we normalize and ignore phase
• qbits evolve in time by Möbius transformations! 

Aside: Bloch Sphere

ℂP1

ℂ2



• 4 complex degrees of freedom, 1 complex constraint

• Determined by 3 points

Möbius Transformations

f(z) =
az + b
cz + d

ad ≠ bc



• Consider 4 points 

• Pick     so that

• We define

Complex Cross Ratios

a, b, c, d, ∈ ℂ

φ(a) = ∞, φ(b) = 1, φ(c) = 0

φ

[a, b; c, d]ℂ := φ(d)



• Some computation reveals that

• We define the length cross ratio by

Length Cross Ratios

[a, b; c, d]ℂ =
(b − a)(d − c)
(b − c)(d − a)

[a, b; c, d] =
(b − a)(d − c)
(b − c)(d − a)

a

b

c

d



• Some computation reveals that

• We define the length cross ratio by

Length Cross Ratios

[a, b; c, d]ℂ =
(b − a)(d − c)
(b − c)(d − a)

[a, b; c, d] =
(b − a)(d − c)
(b − c)(d − a)

a

b

c

d



• A map is conformal if and only if its derivative preserves length 
cross ratios

• Easy direction: the derivative of a conformal map is a rotation and 
scaling - these preserve length cross ratios

Length Cross Ratios



• We can associate length cross 
ratios with the edges of a triangle 
mesh

• Discrete conformal equivalence 
means having the same cross 
ratios

Discrete Conformal Maps (Definition 2)



Hyperbolic
Geometry

Hyperbolic Geometry



• The hyperbolic plane is a 2D surface, but it is so big that you can’t fit 
it into     !

• We study it through “models” 

The Hyperbolic Plane

ℝ3



• Characterization: Gaussian curvature -1 everywhere

• What is Gaussian curvature?

The Hyperbolic Plane

K < 0 K = 0 K > 0



• Curvature -1 => wrinkly

The Hyperbolic Plane



• Hyperbolic plane squished into unit disk

Poincaré Disk

ds2 =
4∥dx∥2

(1 − ∥x∥2)2



• Rigid transformations - Möbius transformations which take the disk 
to itself!

Poincaré Disk

f(z) = λ
z − a
az − 1



• Ideal points - points on boundary

• Infinite perimeter, finite area

• All congruent!

Ideal Hyperbolic Triangles



• There is a conformal map from the disk to the upper half-plane

The Halfspace Model

−iz − i
z − 1
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• There is a conformal map from the disk to the upper half-plane

The Halfspace Model

ds2 =
∥dx∥2

y2

Horizontal slices look Euclidean



• Ideal points - points on boundary

• Infinite perimeter, finite area

• All congruent!

Ideal Triangles in the Halfspace Model



• Straight lines are straight lines

• Angles are wonky

The Klein Model



• What are the rigid transformations of the Klein model?

• They must map straight lines to straight lines

• (Real) projective transformations

• They must preserve the unit circle

• Circle-preserving projective maps

The Klein Model



• Any Euclidean triangle is also a triangle in the Klein model

• But their sides are infinitely long!

The Klein Model



• There’s a unique rigid motion 
between any 2 Klein triangles

• It must be a projective map

• The coefficients are the 
conformal scale factors!

The Klein Model



• We can glue ideal triangles 
together into ideal polyhedra

• There’s more than one way to 
glue a pair of triangles

Ideal Hyperbolic Polyhedra



• 4 points cocircular : real cross ratio

• Equals length cross ratio     
(up to sign)

• 4th point determined by cross ratio

Ideal Hyperbolic Polyhedra



• An ideal hyperbolic polyhedron is specified 
by a length cross ratio per edge

• Rigid transformations of hyperbolic 
polyhedra preserve the length cross ratios 
at edges

Ideal Hyperbolic Polyhedra



• Edge lengths are convenient

• By cutting off the infinite ends of 
the lines, we obtain finite lengths

• “Decorated” ideal triangle

• What happens if we pick a 
different horocycle?

Hyperbolic Edge Lengths

λ
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j

k

ik

λij
λjk



• Horocycles around infinity are 
horizontal (Euclidean) planes

• Picking a different horocycle shifts 
the plane - changes lengths by a 
constant

Hyperbolic Edge Lengths

λ

i j

k

ik

λij

λjk



• Changing horocycles doesn’t 
change

• This is twice the (log of the) 
length cross ratio!

Hyperbolic Edge Lengths

i

j
k

ℓ

λij
λjk

λkℓ
λiℓ

λik

λij − λjk + λkℓ − λiℓ

𝔠𝔯 =
eλij/2 eλkℓ/2

eλjk/2 eλiℓ/2



• Given a mesh, set hyperbolic lengths

• Then a conformal rescaling
•                             looks like

• This is just changing your horocycles!

Hyperbolic Edge Lengths

i

j
k

ℓ

λij
λjk

λkℓ
λiℓ

λik

λij = 2 log ℓij

ℓ̃ij = e(ui+uj)/2ℓij

λ̃ij = λij + ui + uj



Hyperbolic Edge Lengths

λij = 2 log ℓij
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• Two triangle meshes are discretely 
conformally equivalent if they have 
the same hyperbolic metric

• This is equivalent to both 
earlier definitions!

Discrete Conformal Equivalence



Discrete
Uniformi

Discrete Uniformization



Conformal Rescaling Can Break Meshes

Furthermore, no subset of the [discrete 
conformal] transformations forms a group”.“ 

M. Roček, R.M. Williams, 
“The Quantization of Regge Calculus” (1984)



• “Degenerate” meshes still define 
hyperbolic polyhedra

• We can fix degenerate meshes by 
performing hyperbolic edge flips

• Still conformal

Hyperbolic Edge Flips



• Fact: We can always flip to valid 
Euclidean edge lengths

• Hyperbolic Delaunay 
triangulation

Hyperbolic Edge Flips



• Flattening gives us more than just vertex data

• There’s a hyperbolic isometry between the 
plane and our surface

• Better interpolation

Texture Interpolation with Hyperbolic Maps



What Do Hyperbolic Edge Flips Look Like?

• An edge is a straight line between vertices

• They can be weird and bendy



Uniformization with Hyperbolic Edge Flips*



Embedding Hyperbolic Polyhedra

• The polyhedra are given intrinsically

• How do you put them in     ?

• Conformal flattening!

ℍ3


