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Abstract

A variational integrator for ideal magnetohydrodynamics is derived by applying
a discrete action principle to a formal Lagrangian. Discrete exterior calculus is used
for the discretisation of the field variables in order to preserve their geometrical
character. The resulting numerical method is free of numerical resistivity, thus the
magnetic field line topology is preserved and unphysical reconnection is absent. In
2D numerical examples we find that important conservation laws like total energy,
magnetic helicity and cross helicity are satisfied within machine accuracy.
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Schrédinger’s Smoke

Albert Chern Felix Knoppel

Abstract

We describe a new approach for the purely Eulerian simulation of
incompressible fluids. In it, the fluid state is represented by a C2-
valued wave function evolving under the Schrédinger equation
subject to incompressibility constraints. The underlying dynami-
cal system is Hamiltonian and governed by the kinetic energy of
the fluid together with an energy of Landau-Lifshitz type. The
latter ensures that dynamics due to thin vortical structures, all
important for visual simulation, are faithfully reproduced. This
enables robust simulation of intricate phenomena such as vor-
tical wakes and interacting vortex filaments, even on modestly
sized grids. Our implementation uses a simple splitting method
for time integration, employing the FFT for Schrodinger evolu-
tion as well as constraint projection. Using a standard penalty
method we also allow arbitrary obstacles. The resulting algorithm
is simple, unconditionally stable, and efficient. In particular it
does not require any Lagrangian techniques for advection or to
counteract the loss of vorticity. We demonstrate its use in a va-
riety of scenarios, compare it with experiments, and evaluate it
against benchmark tests. A full implementation is included in the
ancillary materials.

Keywords:  discrete differential geometry, fluid simulation,
Schrodinger operator

Concepts: *Mathematics of computing — Partial differential
equations; *Computing methodologies — Physical simula-
tion; *Applied computing — Physics;

1 Introduction

We introduce incompressible Schrodinger flow (ISF), a new method
to simulate incompressible fluids (Fig. 1, middle). Instead of
describing the fluid evolution in terms of the velocity or vor-
ticity field, ISF evolves a two-component wave function v =
(41,%,)T: M — C?, which encodes the fluid state on a 3D domain
M. The classical fluid density p and fluid velocity v = (v;, v,, v5)T
are extracted from 1) as

P=WE=(h ) and oy =L
X

i), a=1,2,3
where (¢,%)a = Re(($,1)c) = Re(@13; + §o1p,). The time
evolution of these wave functions is governed by the Schridinger
equation

imj=—Zap+pyp 5|, =0 &)
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Figure 1: Comparing experiment (dry ice vapor, top) with ISF simu-
lation (middle), followed by a visualization of the underlying wave
function ). Vorticity is concentrated within the green region.

subject to the constraints
(Ap,igh)y =0 and  [yf=1, 2)

which correspond to div(v) = 0 and p = 1 in the classical vari-
ables (Sec. 4.1). The scalar potential p: M — R in Eq. (1) is the
Lagrange multiplier for the divergence constraint (App. A), and
we will refer to it as pressure in analogy to the Euler equation. The
reduced Planck constant h of quantum Physics becomes the only
parameter for our fluid and controls the quantization of vorticity.
For a large range of initial conditions ISF tends to concentrate
vorticity in filaments of strength 27tf (Fig. 1, bottom).

We call Egs. (1) and (2) the incompressible Schrédinger equations
and the corr ding flow the incompressible Schrodinger flow.
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Symplectic Integrators

Explicit Euler

OW You update velocity makes a big
difference

* One option makes your simulation
e e symplectic

* |t captures important features

Symplectic Euler
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Symplect
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Symplectic?

» In 2D, symplectic just means
area-preserving

http://people.bath.ac.uk/tjs42/BNA/bna-res.html . Rea”% Symp‘ec_tic maps
generalize area-preserving
Maps



Symplectic Euler i1s Symplectic

» Luckily for us, the pendulum’s phase space I1s 2

ENE Y Glo We measure areas in 2D

* Determinants

o Useful fact:

D.



Symplectic Euler i1s Symplectic

¢ So the matrix Q := <_01 (1)

) measures (Infinrtesimal)
areas

» Our simulation preserves area (and Is thus

symplectic) If it “preserves’ this matrix
Definitions

O 1 (N} ' 1)
Q= <_1 0) Area matrix




Symplectic Euler i1s Symplectic

» Given a force function F(qg), and a time step h,
symplectic Euler updates positions (g) and
momenta (p) by

B\ pthFg) )\

Definrtions

* VWhat does this do to €27 Q:=<O 1) “Area matrix’”

-1 0

T Update rule

T — T



Symplectic Euler i1s Symplectic

- How Is the area of a parallelogram related to the
area of [(parallelogram) !

* It the parallelogram is tiny, I looks like a linear

map, Its linearization (or Jacobian) L = dT

Definrtions
* We only need to check 0 (0!

-1 0

that L preserves area r Update rule

L=dT Linearization of T

) “Area matrix’




Symplectic Euler i1s Symplectic

» Note that Area(Lv, Lw) = (Lv)' Q(Lw)

= v/ L'QLw
= VT[LTQL]W
* 50 our transformation
preserves area (and Is Definitions
symplectic) as long as a=(" ) “Area matrix’
. LTQL T Update rule

L=dT Linearization of T




Symplectic Euler i1s Symplectic

- Now, we can just do this computation

b <qn> (g, + hp, + h>F(q,) or 1 +h%*,F h
[ 0 p, + hF(q,) -\ Cha BN

Definrtions
= LTQL Q= <_01 é) “Area matrix”
T Update rule
L=dT Linearization of T

(You can also observe that det(L) = |)




Symplectic?

0 1
* In n dmensions, we can define™ € = ( ”)

1. @

+ Symplec

Ic maps are still the maps which satisfy

Q=L"QL
Definrtions
Q= <_01 é) "Area matrix’
T Update rule

L=dT Linearization of T




How does this relate to camels!?

* Symplectic geometry was confusing, even to
mathematicians at first

» [t's “clear” that symplectic maps preserve
volume

» Gromov's non-squeezing theorem



Magnetohydroaynamics

» Physics of conducting fluids

Y/R
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» Key Ingredients

» Velocity field (I-form) i
» Magnetic field (2-form) 3
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https://www.researchgate .net/figure/VVind-vector-and-isotachs-representing-a-wind-velocity-field-of-20 | |-Joplin-MO-tornado figb 304360364,
http://www.sci-news.com/physics/strongest-magnetic-field-achieved-indoors-06420.htm],
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Aside: [ he Magnetic Field 1s not a
Vector Field

» Wrong symmetries under reflection

R

» More like an oriented plane than a vector
£ D)

https://en.wikipedia.org/wiki/Pseudovector#/media/File:BlsAPseudovector.svg



cven More Aside: Faraday 2-Form

time

space



Flulds

* FHuids are difficult

» Simplifying assumptions:

* Incompressible
» No viscosity
» Unit density




Flulds

» How does a fluid’s velocity change over time!

* Fluid 1s made up of small particles which each have
a velocity

» [he fluid drags the velocity field along

dn
L
E il

Definitions
N Velocity




Aside: Lie Derivative

- What is that weird &?

. "How much does
: : : Y v change as | flow
* AR along X?"
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Aside: Lie Derivative

®, Where do | wind

NN = - r 7 7 X DA ?
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Flulds

» Not iIncompressible yet

» Incompressible <= Divergence free

dn

— =—-2 . +d

o pitl T ap

on =0 y
. SEdlh Definrtions
Culer equation” | 7 velocity

P Pressure
dp Gradient of pressure

on Divergence of velocity

T — T



Magnetism

» Lorentz force law

MAGNETIC
F=JxB | i
, : FORCE
» Maxwell's fourth equation™® =3
J LN V X B CURRENT
o CO m b i n i ng’ hMmagnetics.com/images/blog/formg
F=(VXB)XB Definrtions
e l(éﬁ)ﬁﬁ ﬂ I\/agnetic field

of "Curl of "

Magnetic force from

—lsp)P
*In the case of low E-field oscillation, and with some (06) iInduced current
constants dropped — —




Magnetism

» Magnetic field caused by little 1ons

» Carried by flow

df Q.5
T Definitions
dt {
1 Magnetic field
n Velocity
L, Lie derivative along

velocity field




Magnetism

» One last constraint: no magnetic monopoles

dp =0

Definrtions
1 Magnetic field
— — Divergence of
dp magnetic field

T ——

http://aplusphysics.com/courses/honors/magnets/images/Magnetic%20Field?%20Lines.png



MHD Equations

dn
dt

dap
— P

on =0
gin— 0

Advection along velocity field

Force from pressure

Force from magnetic field
Constraints

—X.m +dp — ysppf

Definrtions
N Velocity
f  Magnetic field
P Pressure

dp Gradient of pressure
on Divergence of 1]

dfp Divergence of f§

— l(éﬁ)ﬂﬁ Magnetic force from
iInduced current

53,711 Lie derivative along
velocity field

T — ——



MHD Equations

dn
dt
ap
—=—X
. i
on =0
=

Advection along velocity field

Force from pressure

Force from magnetic field
Constraints

—X.m +dp — ysppf

Definrtions
N Velocity
f  Magnetic field
P Pressure

dp Gradient of pressure
on Divergence of 1]

dfp Divergence of f§

— l(éﬁ)ﬂﬁ Magnetic force from
iInduced current

53,711 Lie derivative along
velocity field

T — ——



Conservation Laws: Energy

1
S EJ\InH2+ IBIE av

Kinetic Energy Definitions

Potential Energy (Magnetic field strength) N Velocity

[ Magnetic field

—— ————




Conservation Laws:
Magnetic Helicrty

» Suppose we have a vector-potential such that

Definrtions

A Vector potential
[ Magnetic field

T — —

Wiegelmann & Sakurai (2012).



Conservation Laws:
Cross Helicrty

+ Similarly

H, := JnAﬁ

"How linked are the velocity and magnetic fields?”

Definrtions

N Velocrty field
f  Magnetic field

— —




Discretization

» Standard Discrete Exterior Calculus gives us d, &

- Now, we just need 1, ¥

s8N 1act, thanks to MHD Equations
Cartan’s Magic Formula, % = 2+ dp — 15y
we only need 1 @B ,
Lo = iydw + diyw di "

on =10

T ———— T



Discretization

» [he proofs of conservation of energy and cross
helicity rely on the fact that 1 and A are adjoint

* We can use the

standard discrete MHD Equations
dn
wedge product —= = = b + dp ~ 15
| . dp
* Also gives us behavior — =~ dp

on boundaries 5n =0




Discretization

» [his conserves energy and cross helicity for freel
» Magnetic helicity doesn't work out so well

MHD Equations

an dn + d ;
— =—1 — 1

dp

&

” i




Complication: 2D MHD

e St o

strong

11

DelC

IR

<grounc

ations to a thin layer of fluid In
magnetic field

» Equations look a brt different

2D MHD Eguations

3D MHD Equations

dn din
= L + dp + 1,:db PP bypci] + dp = 4l
@z—é(b/\n) d—ﬁ=—dlﬁﬁ
‘ At dt !
on =0 on =0

N, T — T



Waves In the magnetic

fleld lines
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Test Case: Plume In a Box

LeuGihim
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~urther questions?

» |s this Integrator (multi)symplectic!

» Jopological properties of magnetic field

« 3D simulation

« Boundaries between fluids



Quick Aside: Hamiltonian
Mechanics 1s Symplectic

 Hamilton’s equations of motion

ol il

q e e X e

op B, et (q) = Q ;CL]]

, oH P v

p = P
0q

Definrtions

Q:= <_01 é) Symplectic Form

O —




Quick Aside: Hamiltonian
Mechanics 1s Symplectic

ar)  xTay= (5 S

s q 5 dq
X 1= (p)_Q oH (aH 0H>
b = Y
q Op

— 2lall7 )

dH = X'Q =: 1,Q Definitions
Q:= <_01 é) Symplectic Form

O —




Quick Aside: Hamiltonian
Mechanics 1s Symplectic

+ Change in £ along time evolution: &€

B artan: Q= di, Q + 4;\

‘4 D \
{ e
(\" \7

7

Definitions / Facts
QXQ — d(dQ) — O Q:= <_01 (1)> Symplectic Form
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