Origami and Geometry

Mark Gillespie Graphics Lab Meeting 10/9/19

[Franck Ramaharo]

[Satoshi Kamiya]

[Robert Lang]

Circle Packing for Origami Design

Flaps from Circles

[Meguro 1992, Lang 1994]

Head

PP Co

[Scorpion varileg, Opus 379, by Robert Lang]

Circle-River Origami Design

[Robert Lang - White-tailed Deer, Opus 550]

ears head body neck tail legs legs

Curvature

Gaussian Curvature

K < 0

K = 0

 $\overline{K} > 0$

intrinsic!

Gaussian Curvature

K < 0 $C > 2\pi R$

K = 0 $C = 2\pi R$

K > 0 $C < 2\pi R$

Curvature in Origami

[Eric Gjerde]

[FearlessFlourish]

More Curvature

Heptagons give negative curvature

Pentagons give positive curvature

[ServeSmasher]

Even More Curvature

[Dave Honda]

[Natalia Guzowska

Programming Curvature using Origami Tessellations

[Dudte, Vouga, Tachi, Mahadevan 2018]

More on Paperfolding

[Fuchs and Tabachnikov 1999]

Folds are Straight Lines

Question:

Given a curve on a sheet of paper, and a curve in space, can we fold the paper along the curve so that it lies along the other curve?

Answer:

Assume that for every $x \in \Gamma$ the absolute value of the curvature of γ at point f(x) is greater than that of Γ at x. Then there exist exactly two extensions of f to isometric embeddings of a plane neighborhood of Γ to space.

Two Isometric Embeddings

Figure 3

Folding the Hyperbolic Crane

[Alperin, Hayes, Lang 2012]

Idea: Right Angle Pentagon

We can, actually make hyperbolic paper and carry out folding experiments with it. To do so, we need two things:

- (a) a hyperbolic sheet of paper,
- (b) a hyperbolic desk to fold on.

A Hyperbolic Desk

$$z = sech^{-1}\sqrt{x^2 + y^2} - \sqrt{1 - (x^2 + y^2)}$$

Constant curvature -1. Lets us fold

3D print it!

Next, Obtain a Hyperbolic Sheet of Paper

1. Smoosh flat paper onto pseudosphere

2. Adhere with methylcellulose

Folding the Hyperbolic Crane

5. There is one extra flap in the middle. Fold it over to the right.

6. Fold on so that the with the c firmly and the right.

epeat with each of other 4 corners.

3. Change each of the creases that run from corner to center to mountain folds, i.e., crease

4. Using the existing creases, gather all 5 corners together at the

Origamizer

[Demaine and Tachi 2017]

Origamizer

<u>https://www.youtube.com/</u> watch?v=GAnW-KU2yn4

In this design, 22.3% of the paper area makes up the actual surface of the target shape—about a 2:1 scale factor in each dimension—which matches the material usage ratio in most practical origami design